Mineralogi Liat dan Mikromorfologi Ultisol Sepanjang Sekuen Curah Hujan di Kalimantan Timur, Indonesia

Makhrawie . M.

Abstract


Abstrak.  Curah hujan yang intensif  yang terjadi dalam wilayah provinsi Kalimantan Timur akan menyebabkan variasi terhadap karakteristik mineralogi dan mikromorfologi tanah, yang selanjutnya akan berdampak pada pengelolaan tanah Ultisol.  Penelitian tanah terhadap 5 pedon Ultisol yang dilakukan secara transek menurut sekuen curah hujan dari arah bagian Timur ke bagian Barat Kalimantan Timur, dari P2 (zona I dengan curah hujan < 2.000 mm/th), P5 (zona II dengan curah hujan 2.000-2.500 mm/th), P14 (zona III dengan curah hujan 2.500-3.000 mm/th), P16 (zona IV dengan curah hujan 3.000-3.500 mm/th) hingga P24 (zona V dengan curah hujan 3.500-4.000 mm/th) dilakukan dengan tujuan untuk mengidentifikasi dan menganalisis keberadaan mineral liat dan selaput liat (argillan) pada Ultisol.  Identifikasi jenis dan jumlah relatif komposisi mineral liat menggunakan alat difraktometer sinar X dan keberadaan argillan menggunakan mikroskop polarisasi. Hasil penelitian menunjukkan bahwa mineral liat yang terdapat pada Ultisol didominasi oleh kaolinit, diikuti oleh mineral illit dalam jumlah sedikit hingga cukup, vermikulit dan gibsit dalam jumlah sedikit, dan gutit serta kuarsa dalam jumlah sedikit sekali.  Jenis mineral liat Ultisol yang terdapat di daerah dengan curah hujan yang lebih tinggi pada pedon-pedon P14, P16 dan P24  lebih bervariasi dibandingkan di daerah dengan jumlah curah hujan yang lebih rendah pada pedon P2 dan P5. Terdapat persentase jumlah selaput liat yang bervariasi pada 5 pedon Ultisol yang diteliti, yaitu sebesar 2.30–28.18 % vol., yang menunjukkan bukti terbentuknya horison argilik (Bt) pada Ultisol. Pada semua pedon yang diteliti juga mengandung oksida besi dan kuarsa yang bervariasi cukup besar, yaitu: oksida besi sebesar 1.46-30.77 % vol. dan kuarsa sebesar 2.36-44.59 % vol. Jumlah selaput liat secara relatif meningkat dengan meningkatnya jumlah curah hujan dan jumlah oksida besi dari zona I sampai III, kemudian menurun pada zona IV dan V.  Jumlah quartz berbanding terbalik dengan kandungan selaput liat dan oksida besi. Selaput liat tertinggi yakni sebesar 28.18 % vol. terdapat pada pedon P14, dengan jumlah oksida besi sebesar 30.23 % vol. dan kuarsa sebesar 6.59 % vol.  

 

Kata kunci:  Mineralogi, mikromorfologi, selaput liat, tanah Ultisol, sekuen curah hujan

 

Abstract.  The intensive rainfall that occurs in the province of East Kalimantan will cause variations in the mineralogy and micromorphological characteristics of the soil, which will further impact the management of Ultisol.  Soil research on 5 pedons of Ultisol (P) conducted in transect according to rainfall sequence from eastern to the western part of East Kalimantan province, from P2 (zone I with rainfall < 2,000 mm/yr), P5 (zone II with rainfall of 2,000-2,500 mm/yr), P14 (zone III with rainfall of 2,500-3,000 mm/yr), P16 (zone IV with rainfall of 3,000-3,500 mm/yr) to P24 (zone V with rainfall of 3,500-4,000 mm/yr).  The research aims are to identify and analyze the presence of clay minerals and clay coatings (argillan) in Ultisol along the rainfall sequence. Identification of the type and relative amount of clay mineral composition using an X-ray diffractometer (XRD) and the presence of clay coatings using a polarizing microscope. The results showed that the clay minerals found in ultisol are dominated by clay mineral kaolinite, followed by clay minerals of illite in small to sufficient amounts, vermiculite, and gibbsite in small amounts, and goethite and quartz in very small amounts respectively.  Clay minerals of Ultisol found in areas with higher rainfall in the pedons P14, P16, and P24 are more varied than in the areas with lower rainfall amounts in pedons P2, and P5. There is a percentage of the number of clay coatings that vary in 5 ultisol pedons studied, which is 2.30 - 28.18% vol., which shows evidence of the formation of the argillic horizon (Bt) in Ultisol.  All pedons studied also contained iron oxide and quartz that varied quite large, namely: iron oxide by 1.46-30.77% vol. and quartz by 2.36-44.59% vol. The number of clay coatings has relatively increased in line with the increasing amount of rainfall and the amount of iron oxide from zones I through III, then decreased in zones IV and V. The amount of quartz is inversely proportional to the content of clay coatings and iron oxides. The highest clay coating of 28.18% vol. is found in pedon P14, with the amount of iron oxide by 30.23% vol. and quartz by 6.59% vol.  

Keywords: Mineralogy, micromorphology, clay coatings, pedon of Ultisol, rainfall sequence 


Keywords


Mineralogy, micromorphology-clay coating, pedon of Ultisol, rainfall sequence

Full Text:

PDF (Indonesian)

References


Aleva, G.J.J. 1983. On Weathering and Denudation of Humid Tropical Interfluves and Their Triple Planation Surfaces. Geol. Mijnbouw 62: 383-388.

Alvarez, R., dan R.S. Lavado. 1998. Climate, Organic Matter and Clay Content Relationships in the Pampa and Chaco Soils, Argentina. Geoderma 83: 127-141.

Beinroth, F. H. 1982. Some Highly Weathered Soils of Puerto Rico. I. Morphology, Formation and Classification. Geoderma 27: 1–73.

Bockheim, J.G. dan A.E. Hartemink. 2013. Distribution and Classification of Soil with Clay-Enriched Horizon in the USA. Geoderma 209-210: 153-160.

Brady, N.C. 1990. The Nature and Properties of Soils, 10 ed. Macmillan, New York, NY. 595 pp.

Brady, N.C. dan R.R. Weil. 2007. The Nature and Properties of Soil 14th Ed. Pearson Education, Inc. and Dorling Kindersley Publishing.

Bronger, A. dan N. Bruhn. 1990. Clay Illuviation in Semiarid-Tropical (SAT) Alfisols? A First Approach to A New Concept. In L.A. Douglas (ed.). Soil Micro-Morphology: A Basic and Applied Science. Proceedings of the VIIIth International Working Meeting of Soil Micromorphology. Development in Soil Sci. 9:175-181.

Bullock, P. dan M.L. Thompson. 1985. Micromorphology of Alfisols. In L.A Douglas dan M.L. Thompson. (Eds.), Soil Micromorphology and Soil Classification. Soil Sci. Soc. of Am. Madison, WI. pp. 17 – 47.

Chuchman, G.J., J.S.Whitton, G.G.C. Claridge dan B.K.G. Theng. 1983. A Rapid Test for Halloysite. Soil Taxonomy News 5:10.

Curi, N. dan D.P. Franzmeier. 1984. Toposequence of Oxisols from the Central Plateau of Brazil. Soil Sci. Soc. Am. J. 48: 341–346.

Deepthy, R. dan S. Balakrishnan. 2005. Climatic Control on Clay Mineral Formation: Evidence from Weathering Profiles Developed on Either Side of the Western Ghats. J. Earth Syst. Sci. 114 (5): 545-556.

Duchaufour, P. 1998. Handbook of Pedology (Translated from French by V.A.K. Sharma). A.A. Balkema, Rotterdam.

Elliott, P.E. dan P.J. Drohan. 2009. Clay Accumulation and Argillic-Horizon Development as Influenced by Aeolian Deposition Vs. Local Parent Material on Quartzite and Limestone-Derived Alluvial Fans. Geoderma 151: 98–108.

Eswaran, H. 1993. Assessment of Global Resources: Current Status and Future Needs. Pedologie 43: 19-39.

FAO. 2006. Guidelines for Soil Description 4th Ed. Food and Agriculture Organization of the United Nations, Rome.

Furian, S., L. Barbiero dan R. Boulet. 2002. Distribution and Dynamics of Gibbsite and Kaolinite in An Oxisol of Serra Do Mar, Southeastern Brazil. Geoderma 106: 83–100.

Hardjowigeno, S. 2003. Klasifikasi Tanah dan Pedogenesis. CV. Akademika Pressindo, Jakarta.

Jakobsen, B. H. 1989. Evidence for Translocations into the B horizon of a Subarctic Podzol In Greenland. Geoderma 45: 3–17.

Jenny, H. 1994. Factors of Soil Formation: A System of Quantitative Pedology. Dover Publication, Inc., New York.

Kerr, P.F. 1959. Optical Mineralogy 3rd Ed. McGraw-Hill, New York. 442p.

Mahrawie, M.L. Rayes, M. Munir, dan Sudarto. 2020. Genesis and Development of Argillic Horizon in Ultisol Climosequence. Eco. Env. & Cons J. 26(4): 104-114.

McCarthy, P.J., I.P. Martini dan D.A. Leckie. 1999. Pedogenic and Diagenetic Influences on Void Coating Formation in Lower Cretaceous Paleosols of the Mill Creek Formation, Southwestern Alberta, Canada. Geoderma 87: 209–237.

Mulyani, A., Hikmatullah dan H. Subagyo. 2004. Karakteristik dan Potensi Tanah Masam Lahan Kering Di Indonesia Dalam Prosiding Simposium Nasional Pendayagunaan Tanah Masam. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor.

Pal, D.K., P. Srivastava dan T, Bhattacharyya. 2003. Clay Illuviation in Calcareous Soils of the Semiarid Part of the Indo-Gangetic Plains, India. Geoderma 115: 177-192.

Quénard, L., A. Samouëlian, B. Laroche dan S. Cornu. 2011. Lessivage as a Major Process of Soil Formation: A Revisitation of Existing Data. Geoderma 167-168: 135–147.

Rayes, M.L. 2006. Deskripsi Profil Tanah di Lapangan. Unit Penerbitan Fakultas Pertanian Univ. Brawijaya, Malang.

Schaetzl, R.J. dan S. Anderson. 2005. Soils: Genesis and Geomorphology. Cambridge University Press, Cambridge, UK. pp. 353–365.

Schwertman, U. 1984. The Influence of Aluminium Oxides on Iron Oxide. IX. Dissolution of Al-Geothites in 6M HCl. Clay Minerals 19:9-19.

Soileau, J. M. dan R.J. McCracken. 1967. Free Iron Coloration in Certain Well-Drained Coastal Plain Soils in Relation to Their Other Properties and Classification. Soil Sci. Soc. Am. Proc. 31: 248–255.

Soil Survey Staff. 2013. Simplified Guide to Soil Taxonomy. USDA-Natural Resources Conservation Service-National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2014. Keys to Soil Taxonomy 12th Ed. USDA, Natural Resources Conservation Service, Washington D.C., USA.

Steward, B.W., R.C. Capo dan O.A. Cadwick. 2001. Effect of Rainfall on Weathering Rate, Base Cation Provenance, and Sr Isotope Composition of Hawaiian Soils. Geochimica et Cosmochimica Acta 65(7): 1087-1099.

Ufnar, D.F. 2007. Clay Coatings from A Modern Soil Chronosequence: A Tool for Estimating the Relative Age of Well-Drained Paleosols. Geoderma 141: 181–200.

USDA. 2012. Field Book for Describing and Sampling Soils Version 3.0. United States Depart. of Agric. and Natural Resources Conservation Service, Washington D.C.

Van Reeuwijk, L.P. 1993. Procedures for Soil Analysis, 4Th Ed. Technical Paper, International Soil Reference and Information Centre. Waginengen, the Netherlands.

West, L.T., F.H. Beinroth, M.E. Sumner dan B.T. Kang. 1998. Ultisol: Characteristics and Impacts on Society. Advances in Agronomy Vol. 63. Academic Press.

Yaalon, D.H. 1983. Climate, Time and Soil Development. In L.P. Wilding, N.E. Smeck dan G.F. Hall (Eds.). Pedogenesis and Soil Taxonomy I. Elsevier Sci. Publ. B.V., Amsterdam.

Zehetner, F., I. Djukic, W.P. Miller, F. Ottner, C.C. Tsai, A. Mentler, Z.S. Chen dan M.H. Gerzabek. 2009. The Climosequence Approach: Experiences from Three Continents, Lessons Learned and Future Challenges. EGU General Assembly, 19-24 April, 2009 in Vienna.




DOI: http://dx.doi.org/10.21082/jti.v46n1.2022.75%20-%2090

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Tanah dan Iklim

 Sertifikat Akreditasi JTI (2021)

 

  

 

 

P-ISSN : 1410-7244

E-ISSN : 2722-7723

Alamat:

Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Jl. Tentara Pelajar No. 12 Bogor 16124

Telf. (0251) 8323012

Fax. (0251) 8311256

(Stat Kunjungan [Sejak 11 Des 2016])