Influence Compost Combined with Agroindustrial Waste on Soil Improvement, Paddy’s Growth, and Gas Emissions in Tidal Lands

Muhammad Helmy Abdillah

Abstract


The application of local organic matter is stated to be able to minimize biogeochemical constraints and increase rice yields but is a source of greenhouse gases in tidal mineral fields. Agroindustrial waste has the potential to be combined to reduce crude fiber from local organic matter. This study aims to compare the effect between materials of compost combined with agroindustry solid waste type that can improve soil properties, increase rice growth and reduce greenhouse gas emissions. This research was conducted at Polytechnic Hasnur’s greenhouse from November 2020 to July 2021 with a nested completely randomized design with Tukey’s HSD test a 5%.  The treatments in this study were rice straw compost, oil palm bunch compost, and purun rat compost, each of which was 253.7 g combined with 126.8 g of crumb rubber solid waste or 126.8 g of the solid decanter. There were 6 combinations and 1 control which was repeated 5 times to make 35 experimental units. The variables observed were plant height, number of productive tillers, root volume, percentage of pyrite, soil density, methane flux, and carbon dioxide. Application of 253.7 g of rice straw compost combined with 126.8 g of solid decanter increased plant height, decreased soil density, and CH4 flux at 60 and 90 days after planting (DAP). Application of 253.7 g of straw compost combined with 126.8 g of solid decanter increased the number of tillers, root volume, and decreased pyrite. The control treatment decreased CO2 flux at 30 and 90 DAP. Application of rat purun compost combined with crumb rubber solid waste was able to reduce CO2 flux 60 DAP.

Keywords


Acid Sulfate Soils; Organic Matter; Gas Emission

Full Text:

PDF (Indonesian)

References


Abdillah, MH. 2017. Pengaruh Aplikasi Abu Batubara terhadap Perkembangan dan Produksi Tanaman Padi pada Tiga Tipologi Tanah Sawah. Thesis Program Pascasarjana Fakultas Pertanian ULM

Abdillah MH. 2021. Composting of oil palm empty bunches using various effective local microorganisms. Agrotechno. 6(1): 17-24. https://doi.org/10.24843/JITPA.2021.v06.i01.p03

Abdillah MH, Effendi NR, Rusnandar N. 2020. Karakteristik fisik dan kimia limbah padat industri karet remah dengan masa inkubasi berbeda. Agrisains. 6(1): 1–7. https://doi.org/10.46365/agrs.v6i01.377

Abdillah MH, Saidy AR, Wahdah R. 2020. Pertumbuhan dan produksi tanaman padi varietas Inpara-3 pada tanah tergenang yang diberikan abu batubara. Rawa Sain. 10(1): 1-8. https://doi.org/10.36589/rs.v10i1.108

Abduh AM, Annisa W. 2017. Interaction of paddy varieties and compost with flux of methane in tidal swampland. Journal of Tropical Soils. 21(3): 179. https://doi.org/10.5400/jts.v21i3.2206

Annisa W, Hanudin E. 2013. Peran ligan organik terhadap pembentukan oksida besi di tanah sulfat masam. Jurnal Sumberdaya Lahan. 7(1): 37–46. https://doi.org/10.2018/jsdl.v7i1.6428

Annisa W, Nursyamsi D. 2016. Pengaruh amelioran, pupuk dan sistem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Tanah dan Iklim. 40(2): 135–145. https://doi.org/10.21082/jti.v40n2.2016.135-145

Anshori A, Sunarminto BH, Haryono E, Mujiyo. 2018. Potential production of CH4 and N2O in soil profiles from organic and conventional rice fields. Sains Tanah: Journal of Soil and Agroclimatology. 15(1): 54–60. https://doi.org/10.15608/stjssa.v15i1.19324

Aulakh MS, Wassmann R, Bueno C, Rennenberg H. 2001. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Int. J. Plant and Soil. 230: 77-86. https://doi.org/10.1023/A:1004817212321

Barbosa RS, de Souza ZM, Carneiro MP, Farhate CVV. 2021. Root system and its relations with soil physical and chemical attributes in orange culture. Appl. Sci. 11(1790). https://doi.org/10.3390/app11041790

Celik I, Gunal H, Budak M, Akpinar C. 2010. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid mediterranean soil conditions. Geoderma. 160(2): 236–243. https://doi.org/10.1016/J.Geoderma.2010.09.028

Chirinda N, Arenas L, Katto M, Loaiza S, Correa F, Isthitani M, Loboguerrero AM, Martínez-Barón D, Graterol E, Jaramillo S, Torres CF, Arango M, Guzmán M, Avila I, Hube S, Kurtz DB, Zorrilla G, Terra J, Irisarri P, Bayer C. 2018. Sustainable and low greenhouse gas emitting rice production in latin america and the caribbean: A Review on the transition from ideality to reality. Sustainability. 10(671): 1–16. https://doi.org/10.3390/su10030671

Conrad R. 2020. Methane production in soil environments: Anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms. 8(6): 1–12. https://doi.org/10.3390/microorganisms8060881

Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI. 2004. The response of heterotrophic co2 flux to soil warming. Global Change Biology. 11: 167-181, https://doi.org/10.1111/j.1365-2486.2004.00878.x

Girkin NT, Ostle N, Tunner, BL, Sjogersten S. 2018. Root exudates and carbon emissions from tropical peatland. Soil Biology and Biochemistry. 117:48-55. https://doi.org/10.1016/j.soilbio.2017.11.008

Ha DH. 2020. Correlation between root development and rice growth (KD18) under the influence of different irrigation regimes. TNU J. Sci. Tech. 225(8): 487-493. https://doi.org/10.34238/tnu-jst.2020.08.3282

Halim NSA, Abdullah R, Karsani SA, Osman N, Panhwar QA, Ishak CF. 2018. Influence of soil amendments on the growth and yield of rice in acidic soil. Agronomy. 8(165). http://dx.doi.org/10.3390/agronomy8090165

Hervani A, Wiharjaka A. 2014. Effectiveness of sampling time and measurement of greenhouse gas on water management in rice field. Widyariset. 17(2): 227–232. http://dx.doi.org/10.14203/widyariset.17.2.2014.227-232

Hidayati N, Triadiati, Anas I. 2016. Photosynthesis and transpiration rates of rice cultivated under thesystem of rice intensification and the effects on growth and yield. Hayati. J. BioSci. 23: 67-72. http://dx.doi.org/10.1016/j.hjb.2016.06.002

Hou AX, Chen GX, Wang ZP, Cleemput, OV, Patrick WH. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. American Journal. 64(6): 2180–2186. https://doi.org/10.2136/SSSAJ2000.6462180X

[IAEA] International Atomic Energy Agency. 1992. Manual Measurement of Methane and Nitrous Oxide Emissions from Agriculture. International Atomic Energy Agency. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwidv6DAjabyAhXzjuYKHd3IBukQFnoECAIQAQ&url=https%3A%2F%2Finis.iaea.org%2Fcollection%2FNCLCollectionStore%2F_Public%2F24%2F019%2F24019160.pdf&usg=AOvVaw37iTcnYH3yo_Yn9_t

Jiao Z, Hou A, Shi Y, Huang G, Wang Y, Chen X. 2006. Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community. Communications in Soil Science and Plant Analysis. 37(14): 1889–1903. https://doi.org/10.1080/00103620600767124

Kementerian Pertanian. 2019. Inpara 3 - Badan Penelitian dan Pengembangan Pertanian. https://www.litbang.pertanian.go.id/varietas/678/ (2 Juli 2021)

Khalil HPSA, Hossain S, Rosamah E, Azli, NA, Saddon N, Davoudpoura Y, Islam N, Dungani R. 2015. The role of soil properties and it’s interaction towards quality plant fiber: A Review. Renewable and Sustainable Energy Reviews. 43(4): 1006–1015. https://doi.org/10.1016/j.rser.2014.11.099

Kittikun AH, Cheirsilp B, Sohsomboon N, Binmarn D, Pathom-aree W, Srinuanpan, S. 2021. Palm oil decanter cake wastes as alternative nutrient sources and biomass support particles for production of fungal whole-cell lipase and application as low-cost biocatalyst for biodiesel production. Processes. 9(1365). https://doi.org/10.3390/pr9081365

Koesrini, Saleh M, Nurzakiah S. 2017. Adaptabilitas varietas Inpara di lahan rawa pasang surut tipe luapan air B pada musim kemarau. Jurnal Agronomi Indonesia. 45(2): 117–123. https://dx.doi.org/10.24831/jai.v45i2.13559

Koesrini, Sosiawan H, Darsani YR. 2020. Preferensi petani terhadap beberapa varietas padi Inpara di lahan rawa pasang surut Kalimantan Selatan. Agros. 22(1). 41–50. http://e-journal.janabadra.ac.id/index.php/JA/article/view/1108/740

Kuzyakov YV, Larionova AA. 2006. Contribution of rhizomicrobial and root respiration to the CO2 emission from soil: A review. Eurasian Soil Sci. 39:753-764. https://doi.org/10.1134/S106422930607009X

Lestari EG. 2006. Review: Mekanisme toleransi dan metode sekesi tumbuhan yang tahan terhadap cekaman kekeringan. Berita Biologi. 8(3): 215–222.

Liu Q, Li YH, Li Z, Wei XM, Zhu ZK, Wu JS, Ge TD. 2021. Characteristics of paddy soil organic carbon mineralization and influencing factors under different water conditions and microbial biomass levels. J. Environ Sci. 42(5): 2440–2448. https://doi.org/10.13227/j.hjkx.202010105

Maulidiya L, Sundahri, Hariyono K. 2015. Studi karekter pertumbuhan empat varietas padi (Oriza sativa L.) pada tiga ketinggian tempat berbeda. Berkala Ilmiah Pertanian. 5(2): 22–25. http://repository.unej.ac.id/handle/123456789/69331

Mawardi, Sunarminto BH, Purwanto BH, Sudira P, Gunawan T. 2020. The influence of tidal on fe distribution at tidal swamp rice-farming in barito river area, South Kalimantan, Indonesia. BIO Web of Conferences. 2: 02002. https://doi.org/10.1051/bioconf/20202002002

Meegoda JN, Li B, Patel K, Wang LB. 2018. A Review of the processes, parameters, and optimization of anaerobic digestion. Int. J. Environ Res. Public. Health. 15(2224). http://dx.doi.org/10.3390/ijerph15102224

Mehmood F, Wang G, Gao Y, Liang Y, Zain M, Rahman SU, Duan A. 2021. Impacts of irrigation managements on soil CO2 emission and soil CH4 uptake of winter wheat field in the North China. Water. 13(2052): 1–28. https://doi.org/10.3390/w13152052

Noor A, Lubis I, Ghulamahdi M, Chozin MA. 2012. Pengaruh konsentrasi besi dalam larutan hara terhadap gejala keracunan besi dan pertumbuhan tanaman padi. Journal Agronomi Indonesia. 40(2): 91–98. https://doi.org/10.24831/jai.v40i2.14311

Panjaitan E, Indradewa D, Martono E, Sartohadi J. 2015. Sebuah dilema pertanian organik terkait emisi metan. Jurnal Manusia dan Lingkungan. 22(1): 66–72. https://doi.org/10.22146/jml.18726

Prianto J, Aziez AF, Harieni S. 2019. Karakter perakaran dan hasil berbagai varietas padi sawah (Oriza sativa L.) dengan aplikasi mikoriza pada lahan sawah tadah hujan. Agrineca. 19(2): 66–72. https://doi.org/10.36728/afp.v19i2.902

Ramesh T, Selvaraj R. 2020. Evaluation of rice cultivation systems for greenhouse gases emission and productivity. Int. J. Eco. Environ Sci. 2(2): 49–54.

Rumanti IA, Koesrini, Sosiawan H, Rina Y. 2020. Uji adaptasi dan seleksi varietas partisipatif terhadap galur-galur padi toleran rendaman dan kekeringan di lahan rawa lebak. Jurnal Agronomi Indonesia. 48(2): 118–126. https://dx.doi.org/10.24831/jai.v48i2.31652

Saidy AR. 2018. Bahan organik tanah: Klasifikasi, Fungsi dan Metode Studi. Lambung Mangkurat University Press. http://eprints.ulm.ac.id/4505/1/Buku - Bahan Organik Tanah.pdf

Saputra DD, Putrantyo AR, Kusuma Z. 2018. Hubungan kandungan bahan organik tanah dengan berat isi, porositas dan laju infiltarsi pada perkebunan salak di Kecamatan Purwosari Kabupaten Pasuruan. Jurnal Tanah dan Sumberdaya Lahan. 5(1): 647–654.

Sapkota A, Haghverdi A, Evila, CCE, Ying SC. 2020. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Syst. 4(2). https://doi.org/10.3390/soilsystems4020020

Setyanto P, Abubakar R. 2006. Evaluation of methane emission and potential mitigation from flooded rice field. Jurnal Litbang Pertanian. 25(4). 139–148. http://www.pustaka.litbang.deptan.go.id/publikasi/p3254064.pdf

Suastika IW, Hartatik W, Subiksa IGM. 2014. Karakter dan Teknologi Pengelolaan Lahan Sulfat Masam Mendukung Pertanian Ramah Lingkungan. In Husnain, P. Wigena, W. Hartatik, Y. Sulaeman, I. W. Suastika, J. Purnomo (Eds.), Pengelolaan Lahan Pada Berbagai Ekosistem Mendukung Pertanian Ramah Lingkungan (ke-1, Nomor 1, hal. 97–120). IAARD Press. https://balittanah.litbang.pertanian.go.id/ind/dokumentasi /buku/ekosistemramah lingkungan/05karakteristikswastika.pdf

Sumardi, Chozin MA, Sigit S. 2021. Penampilan agronomis dan produktivitas galur-galur padi rawa pada lahan lebak. Jurnal Agronomi Indonesia. 49(1): 1–6. https://doi.org/10.24831/jai.v49i1.34143

Susilawati A, Fahmi A. 2013. Dinamika besi pada tanah sulfat masam yang ditanami padi. Jurnal Sumberdaya Lahan. 7(2): 67–75.

Sutrisna N, Surdianto Y, Marbun O. 2016. Pengaruh perlakuan jerami dan varietas padi inbrida terhadap emisi gas rumah kaca di lahan sawah irigasi. Jurnal Tanah dan Iklim. 40(2): 79–85. https://doi.org/10.2017/jti.v40i2.5517

Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A. 2013. Role of organic amendment application on greenhouse gas emission from soil. Int. J. Sci. Environ. 465(1): 72–96. https://doi.org/10.1016/j.scitotenv.2013.01.031

Wang C, Amon B, Schulz K, Mehdi, B. 2021. Factors that influence nitrous oxide emissions from agriculture soil as well as their representation in simulation models: A Review. Agronomy. 11(770). https://doi.org/10.3390/agronomy11040770

Xu J, Lai DYF, Neogi S. 2020. Effects of land use types on CH4 and CO2 production potentials in subtropical wetland soils. Water. 12(1856): 1–19. https://doi.org/10.3390/W12071856

Yuan J, Yi X, Cao L. 2019. Tree-source partitioning of methane emissions from paddy soil: Linkage to methanogenic community structure. Int. J. Molec. Sci. 1586(20): 539–556. https://doi.org/10.3390/ijms20071586

Yuan Q, Pump J, Conrad R. 2014. Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences. 11(2): 237–246. https://doi.org/10.5194/bg-11-237-2014

Yuan-zhi Y. 2015. Effects of ridge tillage on photosynthesis and root characters of rice. Chilean. J. Agr. Res. 75(1): 35-41. https://doi.org/10.4067/S0718-5839201500010000

Zaman M, Kleineidam K, Bakken L, Berendt J, Bracken C, Butterbach-Bahl K, Cai Z, Chang SX, Clough T, Dawar K, Ding WX, Dörsch P, dos Reis Martins M, Eckhardt C, Fiedler S, Frosch T, Goopy J, Görres C-M, Gupta A, Henjes S, Hofmann MEG, Horn MA, Jahangir MM. 2021. Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. In Springer. https://doi.org/10.1007/978-3-030-55396-8

Zhang H, Liu H, Hou D, Zhou Y, Liu M, Wang Z, Liu L, Gu J, Yang J. 2019. The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal. 7(4): 444–457. https://doi.org/10.1016/j.cj.2018.12.011

Zhang Y, Sun R, Varrone C, Wei Y, Shyryn A, Zhou A, Zhang J. 2020. Enhanced acetogenesis of waste activated sludge by conditioning with processed organic wastes in co-fermentation: kinetics, performance and microbial response. Engergies. 13(3630). http://dx.doi.org/10.3390/en13143630

Zheng S, Ye C, Lu J, Liufu J, Lin L, Dong Z, Li J, Zhuang C. 2021. Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. Int. J. Mol. Sci. 22(9554). https://doi.org/10.3390/ijms22179554




DOI: http://dx.doi.org/10.21082/jti.v46n1.2022.1-12

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Tanah dan Iklim

 Sertifikat Akreditasi JTI (2021)

 

  

 

 

P-ISSN : 1410-7244

E-ISSN : 2722-7723

Alamat:

Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Jl. Tentara Pelajar No. 12 Bogor 16124

Telf. (0251) 8323012

Fax. (0251) 8311256

(Stat Kunjungan [Sejak 11 Des 2016])