Karakteristik Lahan Bera Dengan Umur Berbeda dan Pengaruhnya Terhadap Dekomposisi Serasah di Manokwari, Papua Barat

Slamet Arif Susanto, Ibnul Qayim, Triadiati Triadiati

Abstract


Abstrak. Karakteristik umur lahan bera memiliki peran penting dalam pengembalian hara melalui proses dekomposisi. Penelitian dekomposisi serasah dan cadangan karbon pada beberapa umur lahan bera telah dilakukan di Manokwari, Provinsi Papua Barat dari Juli 2020 sampai Januari 2021. Penelitian bertujuan menganalisis proses dekomposisi in situ serasah daun vegetasi lokal pada beberapa umur lahan bera, serta mengukur cadangan karbon dari vegetasi masing-masing lahan bera. Setiap umur lahan bera dipasang sebanyak 18 kantung serasah yang masing-masingnya berisi 20 g serasah daun dari vegetasi lokal lahan bera. Sebanyak tiga kantung serasah diambil setiap bulan dari masing-masing umur lahan bera, kemudian dikeringkan hingga bobot kering konstan. Cadangan karbon biomassa vegetasi dianalisis menggunakan persamaan alometrik berdasarkan diameter pohon setinggi dada (dbh). Hasil penelitian menunjukkan bahwa kehilangan bobot serasah setelah 6 bulan dekomposisi pada lahan bera 5, 10, dan 15 tahun masing-masing mencapai 92,62%; 94,00%; dan 97,12%. Konstanta dekomposisi (tetapan kehilangan bobot serasah) pada lahan bera 5 dan 10 tahun tergolong rendah yakni 0,65 dan 0,94. Lahan bera 15 tahun memiliki konstanta dekomposisi yang tergolong sedang yakni 1,18. Cadangan karbon pada lahan bera 5, 10, dan 15 tahun masing-masing sebesar 7,57; 32,63; dan 141,33 ton/ha. Penurunan rasio C/N setelah 6 bulan dekomposisi pada lahan bera 5, 10, dan 15 tahun masing-masing sebesar 66,67%; 56,25%; dan 39,39%. Dekomposisi serasah pada lahan bera 5 tahun dipengaruhi oleh curah hujan, sedangkan pada lahan bera 15 tahun dipengaruhi oleh kelembapan tanah. Penelitian ini mengindikasikan bahwa umur lahan bera menyebabkan perbedaan komposisi vegetasi, sehingga berpengaruh pada proses dekomposisi dan banyaknya cadangan karbon.

 

Abstract. The characteristics of the fallow land have an important role in the return of nutrients through decomposition process. Research on litter decomposition and carbon stock on different ages of fallow has been carried out in Manokwari, West Papua from July 2020 to January 2021. The aim of the study was to analyze the in situ decomposition process of leaves litterfall from local vegetation at several ages of fallow, and also measure the biomass carbon stock of each fallow land. A total 18 litterbags were installed, each containing 20 g leaves litterfall from the local vegetation of the fallow land. Three litter bags from each age fallow were taken every month and dried to constant mass. Biomass carbon stocks were analyzed using an allometric equation based on the diameter of the trees at breast height (dbh). The results showed that the litter mass loss at fallow 5, 10, and 15 years were 92.62%; 94.00%; and 97.12% respectively after 6-month decomposition. The slowest decay constants (constants of litter mass loss) were 0.65 and 0.94 at fallows 5 and 10 years respectively, whereas at fallow 15 years with k 1.18. Carbon stocks in fallow land of 5, 10, and 15 years were 7.57; 32.63; and 141.33 ton/ha, respectively. The decrease of C/N ratios at fallow 5, 10, and 15 years were 66.67%; 56.25%; and 39.39% respectively after 6 month decomposition. Litter decomposition was influenced by local rainfall on fallow land at 5 years old and soil moisture at 15 years old. This study indicates that the age of fallow lands lead to differences in the composition of vegetation, so that it affects decomposition process and the amount of carbon stocks.

Keywords


fallow, decomposition, leaves litterfall, C/N ratios, carbon stock

Full Text:

PDF (Indonesian)

References


Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 79(3):439–449.

Allen B. 1985. Dynamic of fallow successions and introduction of robusta coffee in shifting cultivation areas in the lowland of Papua New Guinea. Agrofor Syst. 3(3):227–238.

Allen B, Filer C. 2015. Is the ‘Bogeyman’ real? Shifting cultivation and the forest, Papua New Guinea. p. 517–545. In Chairns MF, editor. Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation. Vol 1. Routledge Pr, London (GB).

Asigbaase M, Dawoe E, Sjogersten S, Lomax BH. 2021. Decomposition and nutrient mineralisation of leaf litter in smallholder cocoa agroforests: a comparison of organic and conventional farms in Ghana. J Soil Sed. 21(2):1010–1023.

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manage. 257: 1684–1694.

Bocock KL. 1963. Change in the amount of nitrogen in decomposing leaf litter of sessile oak (Quercus petraea). J Ecol. 51(3):555–566.

Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S. 2010. Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil. 331(1):481–496.

Bonanomi G, Cesarano G, Gaglione SA, Ippolito F, Sarker T, Rao MA. 2017. Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant Soil. 412(1-2):397–411.

Cassart B, Basia AA, Jonard M, Ponette Q. 2020. Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC). Ann For Sci. 77(2):1–20.

Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole RJ, Holl KD. 2011. Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica. 43(3):279–287.

Chan N, Takeda S, Suzuki R, Yamamoto S. 2016. Assessment of biomass recovery and soil carbon storage of fallow forests after swidden cultivation in the Bago Mountains, Myanmar. New For. 47(4):565–585.

Coûteaux M, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trend Ecol Evol. 10(2):63–66.

da Silva WB, Périco E, Dalzochio MS, Santos M, Cajaiba RL. 2018. Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. For Ecol Manage. 429:189–197.

Ewel JJ. 1976. Litter fall and leaf decomposition in a tropical forest succession in Eastern Guatemala. J Ecol. 64(1):293–308.

Froufe LCM, Schwiderke DK, Castilhano AC, Cezar RM, Steenbock W, Seoane CES, Bognola IA, Vezzani FM. 2020. Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic Rainforest Biome. Agrofor Syst. 94(1):159–171.

Frouz J. 2018. Effect of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma. 332(0): 161–172.

Fujii K, Sukartiningsih, Hayakawa C, Inagaki Y, Kosaki T. 2020. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil. 446(1):425–439.

Fujinuma R, Kirchhof G, Ramakrishna A, Sirabis W, Yapo J, Woruba D, Gurr G, Menzies N. 2018. Intensified sweet potato production in Papua New Guinea drives plant nutrient decline over the last decade. Agric Ecosyst Envir. 254:10–19.

García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. 2016. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett. 19(5):554–563.

Gavito ME, Paz H, Barragán F, Siddique I, Arreola-Villa F, Pineda-García F, Balvanera P. 2021. Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest. For Ecol Manage. 479:118526.

Guendehou GHS, Liski J, Tuomi M, Moudachirou M, Sinsin B, Mäkipää R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop Ecol. 55(2):207–220.

Harrera AM, de Mello ACL, de Oliveira Apolinário VX, Júnior JCBD, da Silva VJ, dos Santos MVF, da Cunha MV. 2020. Decomposition of senescent leaves of signalgrass (Urochloa decumbens Stapf. R. Webster) and arboreal legumes in silvopastoral systems. Agroforest Syst. 96(4):2213–2224.

Haridjaja MO, Sabiham S, Van Noordwijk M. 2011. Kehilangan karbon pada beberapa tipe penggunaan lahan gambut tropika yang didrainase. J Tanah Iklim. 35(2):13–25.

Hartemink AE, O’Sullivant JN. 2001. Leaf litter decomposition of Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. Plant Soil. 230(1):115–124.

Hashimoto T, Kojima K, Tange T, Sasaki S. 2000. Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. For Ecol Manage. 126(3):331–337.

Hirobe M, Sabang J, Bhatta BK, Takeda H. 2004. Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: dynamics of carbon, nutrients, and organic constituents. J For Res. 9(4): 347–354

Hoover JD, Liesz SJ, Laituri ME. 2017. Comparing and combining landsat satellite imagery and participatory data to assess land-use and land-cover changes in a coastal village in Papua New Guinea. Hum Ecol. 45(2):251–264.

Ibrahima A, Ntonga JC, Ze MAD. 2010. Leaf litter decomposition in tropical rainforest of Ebom, Southwest Cameroon: Comparison among guild classes. Trop Ecol. 51(2):247–254.

Kalaba FK, Quinn CH, Dougill AJ, Vinya R. 2013. Floristic composition, species diversity and carbon storage in charcoal and agriculture fallows and management implications in Miombo woodlands of Zambia. For Ecol Manage. 304: 99–109.

Lousier JD, Parkinson D. 1978. Chemical element dynamic in decomposing leaf litter. Canad J Bot. 56(21):2795–2812.

Lungmuana, Singh SB, Vanthawmliana, Saha S, Duta SK, Rambuatsaiha, Singh AR, Boopathi T. 2017. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India. Catena. 156:10–17.

Naik SK, Maurya S, Mukherjee D, Singh AK, Bhatt BP. 2018. Rates of decomposition and nutrient mineralization of leaf litter from different orchards under hot and dry sub-humid climate. Arch Agron Soil Sci. 64(4):560–573.

Negash M, Starr M. 2021. Litter decomposition of six tree species on indigenous agroforestry farms in south-eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration. Agrofor Syst. 95(4):755–766.

Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44(2):322–331.

Pacheco FV, de Oliveira Silveira HR, Alvarenga AA, Alvarenga ICA, Pinto JEBP, Lira JMS. 2013. Gas exchange and production of photosynthetic pigments of Piper aduncum L. grown at different irradiances. American J Plant Sci. 4:114–121.

Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Kӧppen-Geiger climate classification. Hydrol Earth Syst Sci. 11(5):1633–1644.

Pei G, Liu J, Peng B, Gao D, Wang C, Dai W, Jiang P, Bai E. 2019. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. For Ecol Manage. 440: 61–69.

Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M. 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil. 435(1):187–200.

Rogers HM. 2002. Litterfall decomposition and nutrient release in a lowland tropical rain forest, Marobe Province, Papua New Guinea [short communication]. J Trop Ecol.18(3):449–456.

Scherer-Lorenzen M, Bonilla JL, Potvin C. 2007. Tree species richness affect litter production and decomposition rates in a tropical biodiversity experiment. Oikos. 116(12): 2108–2124.

Schober P, Boer C, Schwarte LA. 2018. Correlation coefficients: appropriate use and interpretation. Anesht Analg. 126(5):1763–1768.

Scott NA, Cole CV, Elliott ET, Huffman SA. 1996. Soil textural control on decomposition and soil organic matter dynamics. Soil Sci Soc Am J. 60(4):1102–1109.

Silva MHL, Costa RCL, Lobato AKS, Oliveira Neto CF, Laughinghouse IV HD. 2007. Effect of temperature and water restriction on Piper aduncum L. seed germination. J Agron. 6(3):472–475.

Slik JWF, Keßler PJA, van Welzen PC. 2003. Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia). Ecolog Indic. 2: 311–324.

Szefer P, Carmona CP, Chmel K, Konečná M, Libra M, Molem K, Novotný V, Segar ST, Švamberková E, Topliceanu TS. 2017. Determinants of litter decomposition rates in a tropical forest: function traits, phylogeny and ecological succession. Oikos. 126(8):1101–1111.

Tresch S, Frey D, Le Bayon R, Zanetta A, Rasche F, Fliessbach A, Moretti M. 2019. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci Tot Environ. 658:1614–1629.

Triadiati, Tjitrosemito S, Guhardja E, Sudarsono H, Qayim I, Leuschner C. 2011. Litterfall production and leaf-litter decomposition at natural forest and cacao agroforestry in Central Sulawesi, Indonesia. Asian J Biol Sci. 4(3):221–234.

Upadhyay VP. 1998. Pattern of immobilization and release of nitrogen in decomposing leaf litter in Himalayan forest. Proc Indian Acad Sci. 98(3):215–226.

Vivanco L, Austin AT. 2019. The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. For Ecol Manage. 441:144–154.

Wang Q, Wang S, Huang Y. 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manage. 255(3-4):1210–1218.

Yan W, Shangguan Z, Zhong Y. 2021. Responses of mass loss and nutrient release in litter decomposition to ultraviolet radiation. J Soil Sed. 21(2):698–704.

Yuminarti U, Darwanto DH, Jamhari J, Subejo S. 2018. Contemporary farming system in the shifting cultivation practiced by Arfak tribe in Hink District, Pegunungan Arfak regency, West Papua, Indonesia. Asian Agri-History. 22(3):208–217.

Zheng J, Guo R, Li D, Zhang J, Han S. 2017. Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant Soil. 416(1):165–179.

Zhu X, Liu W, Chen H, Deng Y, Chen C, Zeng H. 2019. Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China. Geoderma. 333 :123–134.




DOI: http://dx.doi.org/10.21082/jti.v45n2.2021.113-128

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Tanah dan Iklim

 Sertifikat Akreditasi JTI (2021)

 

  

 

 

P-ISSN : 1410-7244

E-ISSN : 2722-7723

Alamat:

Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Jl. Tentara Pelajar No. 12 Bogor 16124

Telf. (0251) 8323012

Fax. (0251) 8311256

(Stat Kunjungan [Sejak 11 Des 2016])