Biochar-Materials for Remediation on Swamplands: Mechanisms and Effectiveness

Wahida Annisa, Mukhlis Mukhlis, Anna Hairani

Abstract


Abstract. The purpose of this paper is to synthesize all research results qualitatively to explore the potential of biochar as a remediation agent in swamps, including its mechanism, and effectiveness. The soil in swampland is characterized by the presence of pyrite (FeS2) which results in high acidity (soil pH <3.5). The reduction process in swamps produces high amounts of ferrous iron (Fe2+) which is then released into the environment. The mechanism of iron (Fe) poisoning is indicated by the inhibition of nutrient uptake because the roots are covered with iron. This disturbes the root function as a nutrient absorber. Recent research shows that biochar could be used as an approach to reduce soil pollution in swamps through metal immobilization processes. This review paper uses a qualitative method with meta-aggregation approach based on the Francis-Baldesari method (2006). Principally, the soil remediation mechanism using biochar does not remove metals but accumulate them into hydroxide or carbonate deposits with the help of existing microorganisms. Provision of rice husk Biochar can increase the pH value reaching ≥5.0 and grain yield by 20% in intensively cultivated tidal swamps. Increasing the pH value of the soil will supports the formation of Fe hydroxide deposits which are accumulated on rice roots.

 

Abstrak. Tujuan penulisan paper ini adalah mensintesis seluruh hasil penelitian secara kualitatif untuk menggali potensi biochar sebagai bahan remediasi pada lahan rawa meliputi mekanisme, dan efektivitasnya. Tanah di lahan ini dicirikan oleh keberadaan pirit (FeS2) yang menghasilkan keasaman tinggi (pH tanah <3,5). Proses reduksi di lahan rawa menghasilkan besi ferro (Fe2+) dalam jumlah tinggi dan dilepaskan ke lingkungan. Mekanisme keracunan besi (Fe) ditunjukkan dengan terhambatnya serapan hara karena perakaran diselimuti oleh besi sehingga fungsi akar sebagai penyerap unsur hara terganggu. Penelitian terbaru menunjukkan bahwa pemanfaatan biochar sebagai salah satu pendekatan untuk mengurangi pencemaran tanah di lahan rawa melalui proses immobilisasi logam. Paper review ini menggunakan metode kualitatif berdasarkan metode Francis-Baldesari (2006) dengan pendekatan metaagregasi (meta-aggregation). Mekanisme remediasi tanah menggunakan biochar prinsipnya tidak menghilangkan logam tetapi mengakumulasinya menjadi endapan hidroksida maupun karbonat dengan bantuan mikroorganisme yang ada. Pemberian Biochar sekam padi dapat meningkatkan nilai pH mencapai ≥5,0 dan hasil gabah sebesar 20% di lahan rawa pasang surut yang intensif dibudidayakan. Peningkatan nilai pH tanah mendukung pembentukan endapan hidroksida Fe yang diendapkan pada akar padi.


Keywords


Ferro iron, / Soil acidity / Tidal swampland / Soil contamination / Immobilization of metal

Full Text:

PDF

References


Alloway BJ. 1995. Heavy Metals in Soils. Blackie Academic & Professional. London.

Annisa W, Purwanto BH. 2010. Retensi P oleh oksida besi di tanah sulfat masam setelah reklamasi lahan. Jurnal Sumberdaya Lahan, 4 (1): 47-56. Doi: http://dx.doi.org/10.21082/jsdl.v4n1.2010 .%25p.

Annisa W, Hanudin E. 2013. Peran ligan organik terhadap pembentukan oksida besi di tanah sulfat masam. Jurnal Sumberdaya Lahan, (7)1: 37-46. Doi: http://dx.doi.org/10.21082/jsdl. v7n1.2013.%25p.

Annisa W, Nursyamsi D. 2016a. Iron dynamics and its relation to soil redox potential and plant growth in acid sulphate soil of South Kalimantan, Indonesia. Indonesian Journal of Agricultural Science, 17 (1): 1–8. Doi: http://dx.doi.org/ 10.21082/ijas.v17n1.2016.p1-8.

Annisa W, Nursyamsi D. 2016b. Pengaruh amelioran, pupuk dan sistem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Tanah Dan Iklim, 40 (2): 135-145. Doi: http://dx.doi.org/10.21082/jti.v40n2.2016.135-145.

Annisa W, Mukhlis. 2020. Water management and rice husk biochar application to solve acid sulfate soil problems to promote rice yield and reduce greenhouse gas emission. IOP Conf. Ser.: Mater. Sci. Eng. 980 012067. Doi:10.1088/1757-899X/980/1/012067.

Anjarsari N, Sugiarso RDKS. 2015. Analisa gangguan ion merkuri(ii) terhadap kompleks besi(II)-Fenantrolin menggunakan metode Spektrofotometri UV-Vis. Jurnal Sains dan Seni ITS, 4 (2): 139-140.

Aung MS, Masuda H. 2020. How does rice defend against excess iron?: physiological and molecular mechanisms. Fronter in Plant Sci, 11:1102. Doi: https://doi.org/10.3389/fpls.2020.01102.

Becker M, Asch F. 2005. Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168: 558-573. Doi: https://doi.org/10.1002/jpln.200520504.

Breemen NV, Buurman P. 2002. Soil Formation. Second Edition. Kluwer Academic Publishers. New York, Boston, Dordrecht, London, Moscow.

Briat JF, Lobréaux S. 1997. Iron transport and storage in plants. Trends Plant Sci. 2 (5): 187-193. Doi: https://doi.org/10.1016/S1360-1385(97)85225-9.

Chen Y, Zhang X, Chen W, Yang H, Chen H. 2017. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour Technology, 246: 101–109. Doi: https://doi.org/10.1016 /j.biortech.2017.08.138.

Chuenklang P, Thungtong S, Vitidsant T. 2002. Effect of activation by alkaline solution on properties of activated carbon from rubber wood. Journal of Metals, Materials and Minerals, 12 (1): 29-38.

Chun Y, Sheng G, Chiou CT, Xing B. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol, 38 (17): 4649-4655. Doi: https://doi.org/10.1021 /es035034w.

Das O, Sarmah AK, Bhattacharyya D. 2015. A sustainable and resilient approach through biochar addition in wood polymer composites. Sci Total Environ. 512-513: 326-336. Doi: https://doi.org/10.1016/j.scitotenv.2015.01.063.

Francis-Baldesari C. 2006. Systematic Reviews of Qualitative Literature. Oxford: UK Cochrane Centre.

Gezahegn S, Sain M, Thomas SC. 2019. Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Syst, 3: 26. Doi: https://doi.org/10.3390/soilsystems3020026.

Ghorbani M, Asadi H, Abrishamkesh S. 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res, 7: 258-265. Doi: https://doi.org/10.1016/j.iswcr.2019.05.005.

Gray M, Johnson M, Dragila MI, Kleber M. 2014. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy. 61: 196-205. Doi: https://doi.org/10.1016/ j.biombioe.2013.12.010.

Gridley HE, Efisue A, Tolou B, Bakayako T. 2006. Breeding for Tolerance to Iron Toxicity at WARDAl (Cotonou, Benin: Africa Rice Center (WARDA), 96-111.

Guo M, Song W, Tian J. 2020. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Review Article Front. Environ. Sci., 21 October 2020. Doi: https://doi.org /10.3389/fenvs.2020.521512.

Huang Y, Quibria MG. 2015. The global partnership for sustainable development. Nat Resour Forum, 39: 157-174. Doi: https://doi.org/10.1111/1477-8947.12068.

Jeong WS, Choi HY, Nam JW, Kim SA, Choi BY, Moon HS, Kim KS. 2015. Men with severe lower urinary tract symptoms are at increase risk of depression. Int Neurourol J., 19: 286-292. Doi: 10.5213/inj.2015.19.4.286.

Komárek M, Vaněk A, Ettler V. 2013. Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ. Pollut. 172: 9-22. Doi: https://doi.org/10.1016/j.envpol.2012.07.045

Komaryati S, Gusmailina, Pari G. 2012. Peranan Arang Pada Proses Pembuatan Arang Kompos. Seminar MAPEKI. Bogor.

Lehmann J, Joseph S. 2012. Biochar for environmental management: an introduction. In Lehman J, Joseph S (Eds): Biochar for Environmental Management: Science and Technology. London: Earthscan, 183-205. Doi: 10.4324/ 9781849770552.

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitig Adapt Strat Glob Change, 11: 403-427. Doi: 10.1007/s11027-005-9006.

Lelifajri. 2010. Adsorpsi Ion Logam Cu(II) Menggunakan Lignin dari Limbah Serbuk Kayu Gergaji. Jurnal Rekayasa Kimia dan Lingkungan, 7 (3): 126-129.ISSN 1412-5064.

Li G, Song H, Li B, Kronzucker HJ, Shi W. 2015. Auxin resistant1 and PIN-FORMED2 protect lateral root formation in Arabidopsis under iron stress. Plant Physiol, 169: 2608-2623. Doi: 10.1104/pp.15.00904.

Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of The Total Environment, 633: 206-219. Doi: https://doi.org/10.1016/j.scitotenv.2018.03.161.

Lu H, Zhang YY, Yang Y, Huang X, Wang S, Qiu R. 2012. Relative distribution of Pb2+ sorption mechanisms by sludgederived biochar. Water Research, 46: 854-862. Doi: https://doi.org/ 10.1016/j.watres.2011.11.058.

Mahender A, Swamy BPM, Anandan A, Ali J. 2019. Tolerance of iron-deficient and - toxic soil conditions in rice. Plants, 8 (2): 31. Doi: https://doi.org/10.3390/plants8020031.

Masulili A, Utomo WH, Syechfani MS. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulphate soils and rice growth in West Kalimantan. Indonesia. Journal of Agricultural Science, 2(1): 39-47.

Muhrizal S, Shamshuddin J, Fauziah I, Husni MAH. 2006. Changes in iron-poor acid sulphate soil upon submergence. Geoderma, 131: 110-122. Doi: https://doi.org/10.1016/j.geoderma. 2005.03.006.

NRCS. 2005. Global soil regions map, National Resources Conservation Services (NRCS) (Washington, DC: US Department of Agriculture (USDA), Soil Conservation Service). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ soils/use/?cid=nrcs142p2_054013.

Nugraha Y, Utami DW, Rosdianti IDA, Ardie SW, Ghulammahdi M, Suwarno S. 2016. Markers-traits association for iron toxicity tolerance in selected Indonesian rice varieties. Biodivers, 17: 753-763. Doi: 10.13057/ biodiv/d170251.

Nurida NL. 2014. Potensi pemanfaatan biochar untuk rehabilitasi lahan kering di Indonesia. Jurnal Sumberdaya Lahan (edisi Khusus), 8 (3): 57-68. Doi: http://dx.doi.org/10.21082/jsdl.v8n3.2014 .%25p.

Nwajiaku M, Olanrewaju JS, Sato K, Tokunari T, Kitano S, Masunaga T. 2018. Change in nutrient composition of biochar from rice husk an sugarcane bagasse at varying pyrolytic temperatures. Int. J. Recycl. Org. Waste Agric., 7: 269-276. Doi: 10.1007/s40093-018-0213-y.

Onrizal. 2005. Restorasi lahan terkontaminasi logam berat. e- USU repository 2005 Universitas Sumatera Utara.

Palansooriya KN, Shaheen SM, Chene SS, Tsange DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134: 105046. Doi: https://doi.org/10.1016/j.envint.2019.105046.

Park JH, Girish KC, Nanthi SB, Jae WC. Thammared C. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil, 348: 439-451. Doi: 10.1007/s11104-011-0948-y.

Ponnamperuma FN. 1977. Behavior of minor elements in paddy soils. IRRI Res. Paper Series. 8 Mei 1977. 15p.

Pratama BS, Aldriana P, Ismuyanto B, Dwi Saptati NHAS 2018. Konversi ampas tebu menjadi biochar dan karbon aktif untuk penyisihan Cr(VI). Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, 2 (1): 7-12.

Saeni MS, Wuryandari HR. 1997. Pencemaran Pb, Cd dan Cu dalam kangkung, bayam dan air terhadap pencemaran dalam rambut di Kotamadya Bogor. Buletin Kimia, 12: 55-65.

Satawathananont S, Patrick WH, Moore PA 1991. Effect of controlled redox conditions on metal solubility in acid sulphate soil. Plant and Soil, 133 (2): 281-290. https://www.jstor.org/stable /42937034.

Setiawati E, Annisa W. 2020. The ulitization of durian wood (Durio zibethinus) and corn cob (Zea mays) biochar on corn yields in acid sulphate soil. IOP Conference Series: Materials Science and Engineering, Volume 980, 1st International Conference on Science and Technology for Sustainable Industry (ICSTSI 2020) 6-7 August 2020, Banjarbaru, Indonesia. IOP Conf. Ser.: Mater. Sci. Eng. 980 012027.

Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A. 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis. 89: 143-151. Doi: https://doi.org/10.1016/j.jaap.2010.07.006.

Sheoran V, Sheoran AS, Poonia P. 2009. Phytomining: A review. Journal Minerals Engineering 1007–1019 home page: www.elsevier.- com/locate/mineng.

Silveira VC, Fadanelli C, Sperotto RA, Stein RJ, Basso LA, Vaz Junior IS. 2009. Role of ferritin in the rice tolerance to iron overload. Sci. Agric., 66: 549-555. Doi: https://doi.org/10.1590/S0103-90162009000400019.

Singh S, Durgesh KT, Swati S, Shivesh S, Nawal KD, Devendra KC, Marek V. 2017. Toxicity of aluminium on various levels of plant cells and organism: a review. Environ. Exper. Bot., 1: 1-63. Doi: https://doi.org/10.1016/j.envexpbot. 2017.01.005.

Song W, Guo M. 2012. Quality variations of poultry litter biochars generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145. Doi: https://doi.org/10.1016/j.jaap.2011.11.018.

Sudibandriyo M. 2003. A Generalized Ono-Kondo Lattice Model For High Pressure on Carbon Adsorben, Oklahoma State University.

Tadano T. 1975. Devices of rice roots to tolerant high iron concentrations in growth media. Japan Agric. Res. Q., 9 (1): 34-39.

Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125: 70-85. Doi: https://doi.org/10.1016/ j.chemosphere.2014.1.2058.

Thi NBD, Kumar G, Lin CY. 2015. An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental 1267 Management, 157: 220-229. Doi: https://doi.org/10.1016/j.jenvman.2015. 04.022.

Tian J, Miller V, Chiu PC, Maresca JA, Guo M, Imhoff PT. 2016. Nutrient release and ammonium sorption of poultry litter and wood biochars in stormwater treatment. Sci. Total Environ. 553: 596-606. Doi: https://doi.org/10. 1016/j.scitotenv.2016.02.129.

Uchimiya M, Lima IM, Klasson KT, Wartelle LH. 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere, 80: 935-940. Doi: https://doi.org/10.1016/ j.chemosphere.2010.05.020.

Verloo M. 1993. Chemical aspect of soil pollution. ITC-Gen Publications series, (4): 17-46.

Violante A, Cozzolino V, Perelomov L, Caporale A, Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10: 266-290. Doi: http://dx.doi.org /10.4067/S0718-95162010000100005.

Walas SM. 1990. Chemical Process Equipment Selection and Design. Washington: Butterworth-Heinemann.

Wijitkosum S, Jiwnok P. 2019. Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Appl. Sci., 9 (19): 3980. Doi: https://doi.org /10.3390/app9193980.

Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S. 2014. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J. Environ. Manage. 146: 189-197. Doi: https://doi.org /10.1016/j.jenvman. 2014.08.003




DOI: http://dx.doi.org/10.21082/jsdl.v15n1.2021.13-22

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Sumberdaya Lahan

View My Stats

P-ISSN   : 1907-0799

E-ISSN   : 2722-7731

Diindeks oleh:

   

      

 

 

 

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.