Ameliorasi Berbasis Unsur Hara Silika di Lahan Rawa

Adha Siregar, Wahida Annisa

Abstract


Abstrak. Unsur hara Silika (Si) memiliki peranan penting pada pertumbuhan dan produktivitas tanaman padi. Tanaman padi menyerap Si dalam jumlah yang besar yaitu sekitar 10 kali N, 20 kali P, 6 kali K dan 30 kali Ca. Budidaya padi di lahan rawa memiliki beberapa faktor pembatas yang mempengaruhi pertumbuhan dan produktivitas padi diantaranya keracunan unsur toksik seperti Fe dan Al. Kadar unsur toksik terutama Fe di lahan rawa menyebabkan tanah menjadi masam, sehingga banyak tanaman yang tidak dapat beradaptasi dengan kondisi tersebut. Kondisi ini dapat diatasi diantaranya dengan aplikasi Si, yang berperan menurunkan serapan Fe dan Al yang berada dalam kondisi toksik. Beberapa hasil penelitian menunjukkan bahwa Si berpengaruh dalam menurunkan tingkat toksisitas Al dan Fe di tanah. Aplikasi Si sebagai amelioran mengurangi kandungan Fe pada permukaan akar padi serta menurunkan serapan Fe pada tanaman padi sawah melalui peningkatan kekuatan oksidasi akar. Lebih lanjut, aplikasi Si pada budidaya tanaman padi dapat meningkatkan hasil gabah sebesar 50,8%.

 

Abtract. Silicon (Si) has an important role on rice crops growth and productivity. Rice crops absorbs enormous amount of Si as much as ten times of N, twenty times of P, six times of K and thirty times of Ca. Rice cultivation in swampland has several limiting factors such as Fe and Al toxicity. Fe toxicity could increase soil acidity in swampland. However, most plants could not adapt to this condition. Si application as soil ameliorant could be an option to overcome this problem. Si could reduce the toxicity level of Fe and Mn in soil. Previous research proved that Si could decrease Fe and Al toxicity. Si application as ameliorant could reduce Fe concentration in root zone which lead to decreasing Fe uptake through increasing oxidation capability of the root. Moreover, Si application could increase rice yield up to 50.8%..


Keywords


Ameliorasi, lahan rawa, padi, silikon, unsur toksik

Full Text:

PDF

References


Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM. 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum. 37: 5-15. https://doi.org/10.1007/ s11738-014-1768-5.

Ahmed M, Fayyaz-ul-Hassen, Khurshid Y. 2011. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricultural Water Management. 98(12): 1808-1812. https://doi.org/10.1016/j.agwat.2011.07. 003.

Amrullah A, Sopandie D, Sugianta S, Junaedi A. 2014. Peningkatan produktivitas tanaman padi (Oryza sativa L.) melalui pemberian nano silika. Jurnal Pangan. 23(1): 17-32. https://doi.org/10.33964/ JP.V23I1.46.

Annisa W, Nursyamsi D. 2016. Pengaruh amelioran, pupuk dan sistem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Tanah dan Iklim. 40(2): 135-145.

Ashtiani FA, Kadir J, Nasehi A, Rahaghi SRH, Sajili H. 2012. Effect of silicon on rice blast disease. Pertanika J. Trop. Agric. Sci. 35(S): 1-12.

Audebert A, Fofana M. 2009. Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science. 195(1): 66-76. https://doi.org/10.1111/j.1439-037X.2008.0033 9.x.

Chalmardi ZK, Abdolzadeh A, Sadeghipour HR. 2014. Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiologiae Plantarum. 36: 493-502. https://doi.org/10.1007/s11738-013-1430-7.

Cocker KM, Evans DE, Hodson MJ. 1998. The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiologia Plantarum. 104: 608-614. https://doi.org/10.1034/j.1399-3054.1998 .1040413.x.

Conley DJ, Schelske CL, Stoermer EF. 1993. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series. 101(1-2): 179-192. https://doi. org/10.33 54/ meps101179.

Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR. 2019. The controversies of silicon’s role in plant biology. New Phytologist. 221: 67-85. https://doi.org/10.1111/nph.15343.

Debona D, Rodrigues FA, Datnoff LE. 2017. Silicon’s role in abiotic and biotic plant stresses. Annual Review of Phytopathology. 55: 85-107. https://doi.org/10.1146/annurev-phyto-080516-035312.

Dobermann A, Fairhurst T. 2000. Rice: Nutrient Disorders & Nutrient Management. Handbook Series. 191 p.

dos Santos MS, Sanglard LMVP, Barbosa ML, Namorato FA, de Melo DC, Franco WCG, Pérez-Molina JP, Martins SCV, DaMatta FM. 2020. Silicon nutrition mitigates the negative impacts of iron toxicity on rice photosynthesis and grain yield. Ecotoxicology and Environmental Safety. Vol 189 February 2020, 110008. https://doi.org/10.1016/j.ecoenv.2019. 110008.

Dufey I, Gheysens S, Ingabire A, Lutts S, Bertin P. 2014. Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. Journal of Agronomy and Crop Science. 200(2): 132-142. https://doi.org/10.1111/jac.12046.

Egge JK, Aksnes DL. 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series. 83: 281-289. https://doi.org/10.3354/meps083281.

Elisa AA, Ninomiya S, Shamshuddin J, Roslan I. 2016. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application. Solid Earth. 7: 367-374. doi:10.5194/se-7-367-2016.

Emam MM, Khattab HE, Helal NM, Deraz AE. 2014. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science. 8(4): 596-605.

Epstein E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91: 11-17.

Essington ME. 2005. Soil and Water Chemistry: An Integrative Approach. CRC Press.

Fageria NK. 2014. Mineral Nutrition of Rice. CRC Press, Boca Raton.

Foy CD. 1992. Soil chemical factors limiting plant root growth. Advances in Soil Science. 19: 97-149. https://doi.org/10.1007/978-1-4612-2894-3_5.

Fu YQ, Shen H, Wu DM, Cai KZ. 2012. Silicon-Mediated Amelioration of Fe2+ Toxicity in Rice (Oryza sativa L.) roots. Pedosphere. 22(6): 795-802. https://doi.org/10.1016/S1002-0160(12)60 065-4.

Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physio Plantarum 123: 459-466. https://doi.org/10.1111/j.1399-3054.2005.0048 1.x.

Hayasaka T, Fujii H, Namai T. 2005. Silicon content in rice seedlings to protect rice blast fungus at the nursery stage. Journal of General Plant Pathology, 71(3): 169-173. https://doi.org/ 10.1007/s10327-005-0182-7.

Hiradate S. 2012. Utilization and research of silicon in recent agriculture. 2. Dissolution of silicic acid from soils and soil minerals. Journal of the Science of Soil and Manure Japan. 83: 455-461. https://doi.org/10.20710/dojo.83.4_455.

Ittekot V, Humborg C, Schäfer P. 2000. Hydrological alterations and marine biogeochemistry: a silicate issue. BioScience 50(9): 776-782. https://doi.org/10.1641/0006-3568(2000)050[07 76:HAAMBA]2.0.CO;2.

Jawahar S, Vijayakumar D, Bommera R, Jain N. 2015. Effect of silixon granules on growth and yield of rice. Int J Curr Res Aca Rev. 3(5): 74-80.

Kim SG, Kim KW, Park EW, Choi D. 2002. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology. 92(10): 1095-1103. doi: 10.1094/PHYTO.2002.92.10.1095.

Kim YH, Khan AL, Hamayun M, Kang SM.,Beom YJ, Lee IJ. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biological Trace Element Research. 144: 1175-1185. https://doi.org/10.1007/s12011-011-9047-4.

Kochian LV, Hoekenga OA, Pineros MA. 2004. How do crop plants tolerate acid soil. Mechanisms of aluminium tolerance and phosphorous efficiency. Annual Review of Plant Biology. 55: 459-493. https://doi.org/10.1146/annurev.arp lant.55.031903.141655.

Korndörfer GH, Pereira HS, Nolla A. 2004. Silicon analysis in soil, plant and fertilizers. Brazil, GPSi/ICIAG/UFU.

Lavinsky AO, Detmann KC, Reis JV, Ávila RT, Sanglard ML, Pereira LF, Sanglard LMVP, Rodrigues FA, Araújo WL, DaMatta FM. 2016. Silicon improves rice grain yield and photosynthesis specifically when supplied during the hreproductive growth stage. Journal of Plant Physiology. 206: 125-132. https://doi.org/10.1 016/j.jplph.2016.09.010.

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Soil biology & biochemistry biochar effects on soil biota e a review. Soil Biology and Biochemistry. 43(9): 1812-1836. https://doi.org/10.1016/j.soilbio. 2011.04.022.

Liang Y, Nikolic M, Bélanger R, Gong H, Song A. 2015. Silicon In Agriculture: From Theory To Practice. https://doi.org/10.1007/978-94-017-9978-2.

Libes S. 2009. Introduction to Marine Biogeochemistry. Second Edition. Academic Press, 925 pp.

Ma J, Nishimura K, Takahashi E. 1989. Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition. 35: 347-356. https://doi.org/10.1080/00380768 .1989.10434768.

Ma JF, Miyake Y, Takahashi E. 2001. Silicon as a beneficial element for crop plants. p 17-39. In: Datnoff LE. Synder GH. Korndorfer GH. (Eds). Silicon in Agriculture. Amsterdam (AN): Elsevier Science.

Ma JF. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Science and Plant Nutrition. 50(1): 11-18, https://doi.org/10.1080/00380768.2004.10408447.

Manickam T, Cornelissen G, Bachmann RT, Ibrahim IZ, Mulder J, Hale SE. 2015. Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability. 7: 16756-16770. https://doi.org /10.3390/su71215842.

Matichenkov VV, Calvert DV. 2002. Silicon as a beneficial element for sugarcane. Journal American Society of Sugarcane Technologists. 22: 21-30.

Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Ajay, Kundu S, Rao AS. 2014. A case for silicon fertilization to improve crop yields in tropical soils. In Proceedings of the National Academy of Sciences India Section B - Biological Sciences. 84(3): 505-518. https://doi.org/10.1007/s400 11-013-0270-y.

Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany. 120: 8-17. https:// doi.org/10.1016/j.envexpbot.2015.07.001.

Meirinawati H. 2018. Silikon terlarut untuk pertumbuhan diatom. Oseana. XLIII(1): 27-36. doi: https://doi.org/10.14203/oseana.2018. vol.43no.1.10.

Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ. 2012. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of Agronomy and Crop Science. 198(1): 14-26. https://doi.org/10.1111/j.1439-037X.2011.004 86.x.

Miranda SR. 2012. Calcium and magnesium Silicate, an Alternative Choice for liming acid soil, In: 8th International Symposium on Plant Soil Interactions at Low pH, 18-22 October, 2012, Bengalaru, India, 414–415.

Miyake Y. 1993. Silica in soils and plants. Sci. Rep. Faculty of Okayama Liniv. 81: 61-7.

Mobasser HR, Yadi R, Azizi M, Ghanbari AM, Samdaliri M. 2009. Effect of density on morphological characteristics related-lodging on yield and yield components in varieties rice (Oryza sativa L.) in Iran. American-Eurasian Journal of Agricultural and Environmental Science.

Perez CEA, Rodrigues FÁ, Moreira WR, DaMatta FM. 2014. Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with pyricularia oryzae. Phytopathology. 104(2): 143-9. https://doi.org /10.1094/PHYTO-06-13-0163-R.

Sumida H. 1992. Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice plants in cool regions in Japan. Bulletin Tohoku Agric. 851-46.

Müller C, Kuki KN, Pinheiro DT, de Souza LR, Siqueira Silva AI, Loureiro ME, Oliva MA, Almeida AM. 2015. Differential physiological responses in rice upon exposure to excess distinct iron forms. Plant and Soil. 391: 123-138. https://doi.org/10.1007/s11104-015-2405-9.

Mustafa AB, Santi LP, Goenadi DH. 2017. Potensi penggunaan biosilika untuk bioremediasi lahan sulfat masam di perkebunan kelapa sawit. Hlm. 104-116. Prosiding Seminar Nasional Lahan Suboptimal 2017, “Pengembangan Ilmu dan Teknologi Pertanian Bersama Petani Lokal untuk Optimalisasi Lahan Suboptimal”. Palembang 19-20 Oktober 2017.

Nayar PK, Mishra AK, Patnik S. 1982. Silica in rice and flooded rice soils. I. Effects of flooding on the extractable silica in soils and its relation with uptake by rice. Oryza. 19: 34-40.

Patra PK, Neue HU. 2010. Dynamics of water soluble silica and silicon nutrition of rice in relation to changes in iron and phosphorus in soil solution due to soil drying and reflooding. Archives of Agronomy and Soil Science. 56(6): 605-622. https://doi.org/10.1080/03650340903192042.

Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, Stopato CH, Almeida AM. 2013. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Science. 201-202: 81-92. https://doi.org/10.1016 /j.plantsci.2012.12.003.

Piperno DR. 1988. Phytolyth analysis – an archeological and ecological perspective. San Diego, CA: Academic Press.

Ragueneau O, Schultes S, Bidle K, Claquin P, Moriceau B. 2006. Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochemical Cycles. 20(4): 1-15. https://doi.org/10.1029/2006 GB002688.

Ranganathan S, Suvarchala V, Rajesh YBRD, Prasad MS, Padmakumari AP, Voleti SR. 2006. Effect of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum. 50(4): 713-716. https://doi.org/10.1007/s10535-006-0113-2.

Sahrawat KL. 2004. Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition. 27(8): 1471-1504. https://doi.org/ 10.1081/PLN-200025869.

Sanglard LMVP, Detmann KC, Martins SCV, Teixeira RA, Pereira LF, Sanglard ML, Fernie AR, Araújo WL, DaMatta FM. 2016. The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environmental and Experimental Botany. 123: 22-36. https:// doi.org/10.1016/j.envexpbot.2015.11.004.

Savant NK, Snyder GH, Datnoff LE. 1996. Silicon management and sustainable rice production. Advances in Agronomy. 58: 151-199. https:// doi.org/10.1016/S0065-2113(08)60255-2.

Shamshuddin J, Elisa AA, Shazana MARS, Fauziah IC. 2013. Rice defense mechanisms against the presence of excess amount of Al3+ and Fe2+ in the water. Australian Journal of Crop Science. 7(3): 314-320.

Siregar AF, Husnain, Sato K, Wakatsuki T, Masunaga T. 2016. Empirical study on effect of silicon application on rice blast disease and plant morphology in Indonesia. Journal of Agricultural Science; 8(6): 137-148. https://doi.org/10.5539/jas.v8n6p137.

Smayda TJ. 1997. Bloom dynamics : Physiology, behavior, trophic e : ffects. Limonaology and Oceanography. 42(5 part 2): 1132-1136.

Sposito G. 2008. The Chemistry of Soils (2nd ed.), p. 329. Oxford University Press, New York, USA.

Sommer M, Kaczorek D, Kuzyakov Y, Breuer J. 2006. Silicon pools and fluxes in soils and landscapes - A review. Journal of Plant Nutrition and Soil Science. 169(3): 310-329. https://doi.org/10. 1002/jpln.200521981.

Song A, Li P, Fan F, Li Z, Liang Y. 2014. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE. 9(11): e113782. https://doi.org/10.1371/journal.pone.0113782.

Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP. 2009. Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Annals of Applied Biology. 154(2): 269-277. https://doi.org/10.1111/j.1744-7348. 2008.00293.x.

Stein RJ, Lopes SIG, Fett JP. 2014. Iron toxicity in field-cultivated rice: Contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology. 26: 135-146. https://doi.org/10.1007/s40626-014-0013-3.

Struyf E, Smis A, van Damme S, Meire P, Conley DJ. 2009. The global biogeochemical silicon cycle. Silicon 1: 2007-2013. https://doi.org/10.1007/ s12633-010-9035-x.

Van Cappellen P. 2003. Biomineralization and global biogeochemical cycles. Reviews in Mineralogy and Geochemistry. 54(1): 357-381. https://doi.org/10.2113/0540357.

Yanai J, Taniguchi H, Nakao A. 2016. Evaluation of available silicon content and its determining factors of agricultural soils in Japan. Soil Science and Plant Nutrition. 62(5-6): 511-518. https://doi.org/10.1080/00380768.2016.1232601.

Yilmaz A. 2017. Topic 14: Nutrients. www.ioccg.org/ training/turkey/DrYilmaz_lecture2.pdf. Diakses pada tanggal 22 Desember 2017.




DOI: http://dx.doi.org/10.21082/jsdl.v14n1.2020.37-47

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Sumberdaya Lahan

View My Stats

P-ISSN   : 1907-0799

E-ISSN   : 2722-7731

Diindeks oleh:

   

      

 

 

 

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.