Billy Johnson Kepel, Fatimawali Fatimawali, Trina Ekawati Tallei, Marko Jeremia Kalalo


Diabetes mellitus is characterized by a deficiency in insulin secretion, insulin action, or both, resulting in a chronic hyperglycemic condition. Recent studies showed that bioactive compounds from plants possess great anti-diabetic activity with less unfavorable side effects. Therefore, our study aims to evaluate several bioactive compounds from Green Gedi, Leilem, and Sesewanua against alpha-amylase and aldose reductase using a molecular docking approach and to assess their pharmacological properties. We used GC-MS to identify bioactive compounds from three species of Indonesian medicinal plants. Identified bioactive compounds along with bioactive compounds from the literature search were used as ligands targeting alpha-amylase and aldose reductase as protein targets using PyRx. The pharmacological evaluations were performed with SwissADME, ADMETlab, and PASS online. We found that ligands used in this study vary in pharmacological properties and had binding energy ranging from -3.7 kcal/mol to -10.8 kcal/mol and -4.5 kJ/mol to -11.3 kJ/mol against alpha-amylase and aldose reductase, respectively. To conclude, bioactive compounds in these plants have great anti-diabetic potential due to their pharmacological properties, binding energy, and interactions against alpha-amylase and aldose reductase.

Keywords: bioactive compounds, medicinal plants, molecular docking, pharmacological properties



Diabetes melitus dicirikan dengan kurangnya sekresi maupun kerja hormon insulin yang menyebabkan kondisi hiperglikemik kronis. Penelitian terdahulu menunjukkan potensi dari senyawa bioaktif dari tanaman yang memiliki aktivitas antidiates dengan tingkat efek samping yang rendah. Penelitian ini bertujuan untuk mengevaluasi beberapa senyawa bioaktif dari Gedi Hijau, Leilem, and Sesewanua terhadap alfa amilase dan aldos reductase menggunakan penambatan molekuler dan mengukur sifat farmakologinya. GC-MS digunakan untuk mengidentifikasi senyawa bioaktif dari beberapa tanaman Indonesia. Penelusuran literatur juga dilakukan untuk mengidentifikasi senyawa bioaktif yang berpotensi sebagai antidiabetes. Senyawa bioaktif yang teridentifikasi digunakan sebagai ligan dengan menargetkan alfa amilase dan aldos reduktase sebagai protein target dengan menggunakan PyRx. Evaluasi sifat farmakologi dilakukan dengan menggunakan SwissADME, ADMETlab, dan PASS online. Senyawa-senyawa bioaktif yang teridentifikasi menunjukkan sifat farmakologi yang bervariasi dan memiliki energi ikatan terhadap alfa amilase sebesar -3.7 kcal/mol sampai -10.8 kcal/mol dan terhadap aldos reduktase sebesar -4.5 kJ/mol sampai -11.3 kJ/mol. Senyawa bioaktif dari tanaman tersebut menunjukkan potensi antidiabetes yang baik berdasarkan sifat farmakologi, energi ikatan dan interaksi terhadap alfa amilase dan aldos reduktase.

Kata kunci : penambatan molekuler, senyawa bioaktif, sifat farmakologi, tanaman obat



bioactive compounds, medicinal plants, molecular docking, pharmacological properties

Full Text:



Alqahtani, A.S. et al. (2019) Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Nuxia oppositifolia. Biomolecules. [Online] 10 (1), 61. Available from: doi:10.3390/biom10010061.

Anigboro, A.A. et al. (2021) Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase. Biophysical Chemistry. [Online] 269, 106529. Available from: doi:10.1016/j.bpc.2020.106529.

Artasensi, A. et al. (2020) Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules. [Online] 25 (8), 1987. Available from: doi:10.3390/molecules25081987.

Auniq, R. et al. (2019) Assessment of anti-nociceptive and anthelmintic activities of Vitex Peduncularis Wall. leaves and in silico molecular docking, ADME/T, and PASS prediction studies of its isolated compounds. Journal of Complementary Medicine Research. [Online] 10 (4), 170. Available from: doi:10.5455/jcmr.20190805024523.

Cantley, J. & Ashcroft, F.M. (2015) Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biology. [Online] 13 (1), 33. Available from: doi:10.1186/s12915-015-0140-6.

Chakraborty, A.J. et al. (2021) Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life. [Online] 11 (4), 317. Available from: doi:10.3390/life11040317.

Daina, A., Michielin, O. & Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. [Online] 7 (1), 42717. Available from: doi:10.1038/srep42717.

Dallakyan, S. & Olson, A.J. (2015) Small-Molecule Library Screening by Docking with PyRx.In: [Online] pp.243–250. Available from: doi:10.1007/978-1-4939-2269-7_19.

Dong, J. et al. (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics. [Online] 10 (1), 29. Available from: doi:10.1186/s13321-018-0283-x.

Dréanic, M.-P., Edge, C.M. & Tuttle, T. (2017) New Insights into the Catalytic Mechanism of Aldose Reductase: A QM/MM Study. ACS Omega. [Online] 2 (9), 5737–5747. Available from: doi:10.1021/acsomega.7b00815.

El-Kabbani, O. et al. (2004) Aldose reductase structures: implications for mechanism and inhibition. Cellular and Molecular Life Sciences (CMLS). [Online] 61 (7–8), 750–762. Available from: doi:10.1007/s00018-003-3403-2.

Eweas, A.F., Alhossary, A.A. & Abdel-Moneim, A.S. (2021) Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2. Frontiers in Microbiology. [Online] 11. Available from: doi:10.3389/fmicb.2020.592908.

Fakhruddin, S., Alanazi, W. & Jackson, K.E. (2017) Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. Journal of Diabetes Research. [Online] 2017, 1–30. Available from: doi:10.1155/2017/8379327.

Fatimawali et al. (2021) Data on the docking of phytoconstituents of betel plant and matcha green tea on SARS-CoV-2. Data in Brief. [Online] 36, 107049. Available from: doi:10.1016/j.dib.2021.107049.

Filimonov, D.A. et al. (2014) Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds. [Online] 50 (3), 444–457. Available from: doi:10.1007/s10593-014-1496-1.

Firdayani F, F. et al. (2018) Molecular Docking and Dynamic Simulation Studies of Benzoylated Emodin into HBV Core Protein. Journal of Young Pharmacists. [Online] 10 (2s), S20–S24. Available from: doi:10.5530/jyp.2018.2s.5.

Fordyce, C.B. et al. (2015) Cardiovascular Drug Development. Journal of the American College of Cardiology. [Online] 65 (15), 1567–1582. Available from: doi:10.1016/j.jacc.2015.03.016.

Gani M.A. et al. (2021) Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. Journal of advanced pharmaceutical technology & research. 12 (2), 120–126.

Ganou, C.A. et al. (2018) Docking analysis targeted to the whole enzyme: an application to the prediction of inhibition of PTP1B by thiomorpholine and thiazolyl derivatives. SAR and QSAR in Environmental Research. [Online] 29 (2), 133–149. Available from: doi:10.1080/1062936X.2017.1414874.

Ghorbani, A. (2017) Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy. [Online] 96, 305–312. Available from: doi:10.1016/j.biopha.2017.10.001.

Gleissner, C.A. et al. (2008) Upregulation of Aldose Reductase During Foam Cell Formation as Possible Link Among Diabetes, Hyperlipidemia, and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. [Online] 28 (6), 1137–1143. Available from: doi:10.1161/ATVBAHA.107.158295.

Gupta, A. et al. (2022) Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: a computational analysis. Journal of Biomolecular Structure and Dynamics. [Online] 40 (12), 5515–5546. Available from: doi:10.1080/07391102.2021.1871863.

Hakamata, W. et al. (2009) Design and Screening Strategies for α-Glucosidase Inhibitors Based on Enzymological Information. Current Topics in Medicinal Chemistry. [Online] 9 (1), 3–12. Available from: doi:10.2174/156802609787354306.

Hsiu, J., Fischer, E.H. & Stein, E.A. (1964) Alpha-Amylases as Calcium-Metalloenzymes. II. Calcium and the Catalytic Activity *. Biochemistry. [Online] 3 (1), 61–66. Available from: doi:10.1021/bi00889a011.

Islam, M.T. (2017) Andrographolide, a New Hope in the Prevention and Treatment of Metabolic Syndrome. Frontiers in Pharmacology. [Online] 8. Available from: doi:10.3389/fphar.2017.00571.

Jhong, C.-H. et al. (2015) Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BioFactors. [Online] 41 (4), 242–251. Available from: doi:10.1002/biof.1219.

Kairupan, C.F., Mantiri, F.R. & H Rumende, R.R. (2019) Phytochemical Screening and Antioxidant Activity of Ethanol Extract of Leilem ( Clerodendrum minahassae Teijsm. & Binn) as an Antihyperlipidemic and Antiatherosclerotic Agent. IOP Conference Series: Earth and Environmental Science. [Online] 217, 012016. Available from: doi:10.1088/1755-1315/217/1/012016.

Kalalo, M.J. et al. (2021) TEA BIOACTIVE COMPOUNDS AS INHIBITOR OF MRSA PENICILLIN BINDING PROTEIN 2a (PBP2a): A MOLECULAR DOCKING STUDY. Jurnal Farmasi Medica/Pharmacy Medical Journal (PMJ). [Online] 3 (2), 70. Available from: doi:10.35799/pmj.3.2.2020.32878.

Kharroubi, A.T. & Darwish, H.M. (2015) Diabetes mellitus: The epidemic of the century. World journal of diabetes. 6 (6), 850–867.

Kousaxidis, A. et al. (2020) Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. European Journal of Medicinal Chemistry. [Online] 207, 112742. Available from: doi:10.1016/j.ejmech.2020.112742.

Luis-Rodríguez, D. (2012) Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World Journal of Diabetes. [Online] 3 (1), 7. Available from: doi:10.4239/wjd.v3.i1.7.

Maccari, R. & Ottanà, R. (2015) Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. Journal of Medicinal Chemistry. [Online] 58 (5), 2047–2067. Available from: doi:10.1021/jm500907a.

Mullard, A. (2017) 2016 FDA drug approvals. Nature Reviews Drug Discovery. [Online] 16 (2), 73–76. Available from: doi:10.1038/nrd.2017.14.

Nair, S.S., Kavrekar, V. & Mishra, A. (2013) In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology. 3.

Noor, H. et al. (2021) Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 – a computational modeling. Journal of Biomolecular Structure and Dynamics. [Online] 1–16. Available from: doi:10.1080/07391102.2021.1873190.

Nurrulhidayah, A.F. et al. (2020) Review on in vitro antioxidant activities of Curcuma species commonly used as herbal components in Indonesia. Food Res. [Online] 4 (2). Available from: https://www.myfoodresearch.com/vol-49474issue-2.html.

Oyama, T. et al. (2006) The role of polyol pathway in high glucose-induced endothelial cell damages. Diabetes Research and Clinical Practice. [Online] 73 (3), 227–234. Available from: doi:https://doi.org/10.1016/j.diabres.2006.02.010.

Patil, V.S. et al. (2020) Gene set enrichment analysis, network pharmacology and in silico docking approach to understand the molecular mechanism of traditional medicines for the treatment of diabetes mellitus. Journal of Proteins and Proteomics. 11, 297–310.

Piparo, E. Lo et al. (2008) Flavonoids for Controlling Starch Digestion: Structural Requirements for Inhibiting Human α-Amylase. Journal of Medicinal Chemistry. [Online] 51 (12), 3555–3561. Available from: doi:https://doi.org/10.1021/jm800115x.

Ramana, K. V. & Srivastava, S.K. (2010) Aldose reductase: a novel therapeutic target for inflammatory pathologies. The international journal of biochemistry & cell biology. [Online] 42 (1), 17–20. Available from: doi:https://doi.org/10.1016/j.biocel.2009.09.009.

Rammohan, A. et al. (2020) Design, synthesis, docking and biological evaluation of chalcones as promising anti-diabetic agents. Bioorganic Chemistry. [Online] 95, 103527. Available from: doi:https://doi.org/10.1016/j.bioorg.2019.103527.

Sapiun, Z. et al. (2020) Determination of Total Flavonoid Levels of Ethanol Extract Sesewanua Leaf (Clerodendrum Fragrans Wild) With Maceration Method Using UV-Vis Spectrofotometry. Pharmacognosy Journal. [Online] 12 (2), 356–360. Available from: doi:10.5530/pj.2020.12.56.

Sotriffer, C.A., Krämer, O. & Klebe, G. (2004) Probing flexibility and “induced-fit” phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics. [Online] 56 (1), 52–66. Available from: doi:https://doi.org/10.1002/prot.20021.

Tallei, T.E. et al. (2020) Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Riganti, C. (ed.). Scientifica. [Online] Available from: doi:https://doi.org/10.1155/2020/6307457.

Tandi, J. et al. (2016) Test of Ethanolextract Red Gedi Leaves (Albelmoschus Manihot.(L.) Medik) in White Rat (Rattus Norvegicus) Type 2 Diabetes Mellitus. International Journal of Sciences: Basic and Applied Research (IJSBAR). [Online] 30 (4). Available from: https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6616.

Tang, W.H., Martin, K.A. & Hwa, J. (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in pharmacology. [Online] 3, 87. Available from: doi:https://doi.org/10.3389/fphar.2012.00087.

Urzhumtsev, A. et al. (1997) A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure (London, England : 1993). [Online] 5 (5), 601–612. Available from: doi:10.1016/s0969-2126(97)00216-5.

Vijayakumar, P. et al. (2017) HbA1c and the Prediction of Type 2 Diabetes in Children and Adults. Diabetes care. [Online] 40 (1), 16–21. Available from: doi:https://doi.org/10.2337/dc16-1358.

Whitcomb, D.C. & Lowe, M.E. (2007) Human Pancreatic Digestive Enzymes. Digestive Diseases and Sciences. [Online] 52 (2), 1–17. Available from: doi:10.1007/s10620-006-9589-z.

DOI: http://dx.doi.org/10.21082/jlittri.v28n1.2022.21-34


  • There are currently no refbacks.

Copyright (c) 2022 Jurnal Penelitian Tanaman Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

P-ISSN: 0853-8212
E-ISSN: 2528-6870

Pusat Penelitian dan Pengembangan Perkebunan

(Indonesian Center for Estate Crops Research and Development)

Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu

Bogor 16111 Indonesia

Phone: +62251-8313083

Fax: +62251-8336194

Email: littri_puslitbangbun@yahoo.co.id

View My Stats