The Effect of Colchicine onGenome Size and Agronomical Traits and Correlation with Sugarcane Putative Mutants Production

Nurya Yuniyati, Trikoesoemaningtyas Trikoesoemaningtyas, Sri Suhesti

Abstract


The mutation could improve plant genetic variability. Some putative sugarcane mutants originating from the PS 881 variety have been produced through mutation induction using colchicine. The study aimed to determine the effect of colchicine induced on genome size and agronomical traits, and its correlation with sugarcane putative mutants production. The experiment was conducted at the UPBUP of IAARD, Bogor, July 2018-April 2019. The research was carried out in an augmented design in randomized complete block design, using 35 genotypes of the first generation G0 (30 putative mutants from colchicine 0.03 and 0.05%, five check varieties). The genome size, agronomical traits, i.e. stem number, length, diameter, and weight per meter; internode number and length; brix, and production, were evaluated. This result showed that colchicine increased 5.03-13.64% genome size of putative sugarcane mutants compared to the original variety PS 881. It is significantly different for almost all of agronomical traits. The genome size was significantly correlated very positively with brix and significantly positively with stem length and diameter, and production. Path analysis showed that stem (weight per meter and length) has a direct effect on production, in contrast, genome size, stem diameter, internode number, and brix have an indirect effect through stem weight per meter to production. Indirect selection to obtain high production can be done through stem (weight per meter and length), consider for genome size, stem diameter, internode number, and brix. This is  experimental preliminary information, validation on field is needed among direct and indirect of production components to production.

Keywords: agronomical traits correlation, colchicine, path analysis, sugarcane production

 

Abstrak

PENGARUH KOLKISIN TERHADAP UKURAN GENOM DAN KARAKTER AGRONOMI SERTA HUBUNGANNYA DENGAN PRODUKSI MUTAN PUTATIF TEBU

Peningkatan keragaman genetik dapat dilakukan melalui mutasi. Sejumlah mutan putatif tebu yang berasal dari varietas PS 881 telah dihasilkan melalui induksi mutasi menggunakan kolkisin. Penelitian bertujuan untuk mengetahui pengaruh kolkisin terhadap ukuran genom dan karakter agronomi, serta hubungannya dengan produksi mutan putatif tebu. Percobaan dilaksanakan di Unit Pengelola Benih Unggul Pertanian (UPBUP), Badan Litbang Pertanian, Bogor, Juli 2018-April 2019. Penelitian menggunakan rancangan augmented dalam rancangan acak kelompok lengkap, dengan 35 genotipe generasi awal G0 (30 mutan putatif tebu hasil perlakuan kolkisin 0,03 dan 0,05%, serta lima varietas pembanding). Karakter yang diamati adalah ukuran genom dan karakter agronomi (jumlah, panjang, diameter, dan bobot batang per meter; jumlah dan panjang ruas; brix; serta produksi). Hasil penelitian menunjukkan perlakuan kolkisin meningkatkan ukuran genom mutan putatif tebu 5,03-13,64% dibandingkan tetua PS 881 dan mengakibatkan perbedaan yang nyata pada hampir seluruh karakter agronomi. Ukuran genom berkorelasi positif sangat nyata dengan brix dan nyata dengan panjang dan diameter batang, serta produksi. Analisis lintas menunjukkan karakter bobot batang per meter dan panjang batang berpengaruh langsung pada produksi, sedangkan karakter ukuran genom, diameter batang, jumlah ruas, dan brix berpengaruh tak langsung pada produksi melalui bobot batang per meter. Seleksi tak langsung untuk mendapatkan produksi tinggi terutama melalui karakter bobot batang per meter dan panjang batang dengan mempertimbangkan karakter ukuran genom, diameter batang, jumlah ruas, dan brix. Hasil penelitian merupakan informasi awal yang memerlukan validasi hubungan pengaruh langsung dan tak langsung komponen produksi terhadap produksi di tingkat lapangan.

Kata kunci : analisis lintas, kolkisin, korelasi karakter agronomi, produksi tebu


 


Keywords


flow cytometry; korelasi; sidik lintas; Saccharum officinarum L.

Full Text:

PDF

References


Alam, M.S. et al. (2016) Correlation and path-coefficient analysis of pummelo. Journal of Bioscience and Agriculture Research. [Online] 8 (1), 718–725. Available from: doi:10.18801/jbar.080116.85.

Badaruddin, M.F. et al. (2017) Seleksi dan Karakter Sekunder Jagung Inbrida Toleran Cekaman Kekeringan. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). [Online] 45 (2), 130. Available from: doi:10.24831/jai.v45i2.13179.

Baraiya, V.K. et al. (2018) Correlation and path analysis in sunflower (Helianthus annus L .). J. Pharmacognosy and Phytochemistry. 7 (5), 2730–2732.

Comai, L. (2005) The advantages and disadvantages of being polyploid. Nature Reviews Genetics. [Online] 6 (11), 836–846. Available from: doi:10.1038/nrg1711.

Darzynkiewicz, Z., Huang, X. & Zhao, H. (2017) Analysis of Cellular DNA Content by Flow Cytometry. Current Protocols in Immunology. [Online] 119 (November), 5.7.1-5.7.20. Available from: doi:10.1002/cpim.36.

Doležel, J. & Bartoš, J. (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany. [Online] 95 (1), 99–110. Available from: doi:10.1093/aob/mci005.

Edmé, S.J. et al. (2005) Determination of DNA content and gome size in sugarcane. Journal American Society of Sugar Cane Technologists. [Online] 25, 1–16. Available from: http://www.assct.org/journal/JASSCT PDF Files/volume 25/A03-15 Edme final.pdf.

Ermayanti, T.M., Wijayanta, A.N. & Ratnadewi, D. (2018) Induksi Poliploidi pada Tanaman Talas ( Colocasia esculenta ( L .) Schott ) Kultivar Kaliurang dengan Perlakuan Kolkisin secara In Vitro ( In vitro Polyploid Induction on Taro ( Colocasia esculenta ( L .) Schott ) Cultivar Kaliurang with Colchicine Treatm. 14 (1), 91–102.

Fauzi, A.A. (2018) Peningkatan Keragaman Genetik Tebu (Saccharum officinarum L.) Menggunakan Kolkisin dan Seleksi In Vitro Menggunakan NaCl untuk Mendapatkan Tebu Toleran Salinitas. Universitas Sultan Ageng Tirtayasa.

Gravois, K.A., Milligan, S.B. & Martin, F.A. (1991) Indirect selection for increased sucrose yield in early sugarcane testing stages. Field Crops Research. 26 (1), Elsevier, 67–73.

Hartati, R.S. et al. (2018) Induksi mutasi dengan kolkisin dan seleksi in vitro tebu toleran kekeringan menggunakan polyethylene glicol. Jurnal Littri. [Online] 24 (2), 93–104. Available from: doi:10.21082/littri.v24n2.2018.93-104.

Indrawanto, C. et al. (2012) Budidaya dan Pasca Panen Tebu. Pusat Penelitian dan Pengembangan Perkebunan (ed.) Jakarta, IAARD Press.

Jackson, P. & McRae, T.A. (2001) Selection of sugarcane clones in small plots. Crop science. 41 (2), Crop Science Society of America, 315–322.

Jamoza, J.E. et al. (2014) Broad-sense heritability estimation and correlation among sugarcane (Saccharum spp. hybrids) yield and some agronomic traits in western Kenya. International Journal of Agricultural Policy and Research. [Online] 2 (1), 16–25. Available from: doi:10.13140/RG.2.1.5153.3280.

Kristina, N.N. & Syahid, S.F. (2015) Pengaruh kolkhisin terhadap penampilan lada (Piper nigrum L.) mutan dan analisis ploidi. Jurnal Littri. 21 (3), 125–130.

Lasmono, G., Sugiharto, A.N. & Respatijarti (2018) Pendugaan nilai heritabilitas, keragaman genetik dan kemajuan genetik harapan pada beberapa genotipe F5 cabai (Capsicum annuum L.). Jurnal Produksi Tanaman. 6 (4), 668–677.

Lysak, M. (2015) Estimation of nuclear DNA content in Sesleria ( Poaceae ). [Online] (April 1998). Available from: doi:10.1080/00087114.1998.10589127.

Nofitahesti, I. & Daryono, B.S. (2016) Karakter fenotip kedelai (Glycine max (L.) Merr.) hasil poliploidisasi dengan kolkisin. Scientiae Educatia. 5 (2), 90–98.

Oliveira, A.C.L. et al. (2015) Flow cytometry reliability analysis and variations in sugarcane DNA content. Genetics and Molecular Research. [Online] 14 (2), Fundacao de Pesquisas Cientificas de Ribeirao Preto, 7172–7183. Available from: doi:10.4238/2015.June.29.11.

Pandya, M.M. & Patel, P.B. (2017) Studies on correlation and path analysis for quality attributes in sugarcane [Saccharum Spp. Hybrid]. International Journal of Pure & Applied Bioscience. [Online] 5 (6), 1381–1388. Available from: doi:10.18782/2320-7051.2769.

Petersen, R.G. (1994) Agricultural Field Experiments: Design and Analysis. Dekker, M. (ed.) CRC Press.

Premachandran, M.N., Prathima, P.T. & Lekshmi, M. (2011) Sugarcane and polyploidy - A review. Journal of Sugarcane Research. [Online] 1 (2), 1–15. Available from: https://sugarcane.icar.gov.in/images/sbi/article/jsr/pp12-1.pdf.

Rahmi, P., Witjaksono & Ratnadewi, D. (2019) Induksi Poliploidi Tanaman Kangkung ( Ipomoea aquatica Forssk .) Kultivar Salina In Vitro dengan Oryzalin ( In Vitro Polyploidy Induction of Water Spinach ( Ipomoea aquatica Forssk .) Cultivar ‘ Salina ’ by Oryzalin ). Jurnal Biologi Indonesia. 15 (1), 1–8.

Singh, R.K. & Chaudhary, B.D. (1979) Biometrical Methods In Quantitative Genetic Analysis. New Delhi (IN), Kalyani Publishers.

Sirojuddin, Rahayu, T. & Laili, S. (2017) Pengaruh pemberian berbagai konsentrasi kolkisin dan lama perendaman terhadap respon fenotipik zaitun (Olea europaea). Biosaintropis. 2 (2), 36–41.

Suminah, Sutarno & Setyawan, A.D. (2002) Induksi Poliploidi Bawang Merah ( Allium ascalonicum L .) dengan Pemberian Kolkisin. [Online] 3 (1), 174–180. Available from: doi:10.13057/biodiv/d030102.

Susianti, A. et al. (2015) Karakterisasi Morfologi dan Anatomi Stroberi (Fragaria x ananassa D. cv. Festival) Hasil Induksi Kolkisin. Biogenesis: Jurnal Ilmiah Biologi. [Online] 3 (2), 66–75. Available from: doi:10.24252/bio.v3i2.929.

Syukur, M., Sriani, S. & Siregar, A. (2010) Pendugaan parameter genetik beberapa karakter agronomi cabai F4 dan evaluasi daya hasilnya menggunakan rancangan perbesaran (augmented design). Jurnal Agrotropika. [Online] 15 (1), 9–16. Available from: https://repository.ipb.ac.id/handle/123456789/58435.

Touchell, D.H., Palmer, I.E. & Ranney, T.G. (2020) In vitro Ploidy Manipulation for Crop Improvement. [Online] (June). Available from: doi:10.3389/fpls.2020.00722.

Weber, V.S. et al. (2012) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Science. 52 (3), The Crop Science Society of America, Inc., 1011–1020.

Widyasari, W.B. & Lestari, S. (2009) Keragaman genetik karakter pendukung toleransi koleksi tebu hibrid (Saccharum Hybrid) terhadap cekaman kekeringan. MPG. 45(3), 133-148.

Yu, F. et al. (2018) Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization. Molecular Cytogenetics. [Online] 11 (1), Molecular Cytogenetics, 35. Available from: doi:10.1186/s13039-018-0387-z.

Ziyomo, C. & Bernardo, R. (2013) Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Science. 53 (4), The Crop Science Society of America, Inc., 1269–1275.




DOI: http://dx.doi.org/10.21082/jlittri.v27n1.2021.22-33

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Penelitian Tanaman Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




P-ISSN: 0853-8212
E-ISSN: 2528-6870

Pusat Penelitian dan Pengembangan Perkebunan

(Indonesian Center for Estate Crops Research and Development)

Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu

Bogor 16111 Indonesia

Phone: +62251-8313083

Fax: +62251-8336194

Email: littri_puslitbangbun@yahoo.co.id



View My Stats