Ketersediaan Kedelai Berdasarkan Peramalan Produksinya dan Beberapa Kendala serta Permasalahannya di Indonesia

Dedi Nugraha, I Putu Wardana, Made Oka Adnyana

Abstract


Soybean take importance role as source of legumes protein for Indonesian people’s because has lower price compared with other source of protein. Soybean demand contiunously increase because population growth and development of foodindustry’s, while production growth is slowly declining (leveling off) campared to it’s demand. Soybean production’s in 2013 only 0,78 million ton, while it’s demand is 2,9 millions ton, so need import about 2.12 million tons to meet the demand. This study aims to establish a model for predicting soybean production in relationship with constraint and it’s problem as a factor of its boundary. This study used the technique of forecasting with using time series data. Best model selected will be used to estimate soybeanproduction’s. Selection of the best model using criteria Mean Absolute Percent Error (MAPE), Root Mean Square Error (RMSE), and Akaike Information Criteria (AIC). Best model selected is ARIMA (1,1,1). Based on result of forcasting, number of soybean production’s on 2022 is 0,994 million tons. Though has productivity with increasing trend, but it’s not significant, so the production still low compared to it’s demand. Generally, decline of production caused by reduction of harvest area as one of less competitive crop compared with other secondary crops (palawija), and high biotic and abiotic pressure.


Keywords


forecasting; soybean production; productivity; harvest area

Full Text:

PDF (Indonesian)

References


Bachtiar, M. Ghulamahdi, M. Melati, D. Guntoro, dan A. Sutandi. 2016. Kebutuhan nitrogen Tanaman Kedelai pada Tanah Mineral dan Mineral Bergambut dengan Budi Daya Jenuh Air. Penelitian Pertanian Tanaman Pangan 35(3):2017-227

Brockwell, P.J. and Davis, R. A. 1996. Introduction to Time Series and Forecasting. Newyork. Springer. Sections 3.3 and 8.3.

Budhi, G.S. dan M. Aminah. 2010. Swasembada kedelai: Antara Harapan dan Kenyataan. Forum Penelitian Agro Ekonomi 28(1):55-68.

Dartanto, T dan Usman. 2011. Volatility of World Soybean Prices, Import Tariffs and Poverty in Indonesia: A CGE-Microsimulation Analysis. The Journal of Applied Economic Research, 5(2): 139181

Carolina, R.A., S. Mulatsih, dan L. Anggraeni. 2016. Analisis Volatilitas Harga dan Integrasi Pasar Kedelai Indonesia dengan Pasar Kedelai Dunia. Agro Ekonomi 34 (1): 47-46.

Fauzannissa, R.A.,H. Yasin, dan D. Ispriyanti. 2015. Peramalan Harga Minyak Mentah Dunia Menggunakan Metode Radial Basis Function Neural Network. Jurnal Gaussian 5(1):193-202.

Fitriani, B.E., D. Ispriyanti, dan A. Prahutama. 2015. Peramalan Beban Pemakaian Listrik Jawa Tengah dan Daerah Istimewa Yogyakarta dengan Menggunakan Hybrid ARIMA-Neural Network. Jurnal Gaussian 4(4):745-754.

Garuda, S.R., Y. Baliadi, dan M.S. Lestari. Pengembangan Kedelai di Papua: Potensi Lahan, Strategi Pengembangan, dan Dukungan Kebijakan. Litbang Pertanian 36(1):47-58

Hidayah, S. L. I. A., A. Rusgiyono, dan Y. Wilandari. 2015. Perbandingan Model ARIMA dan Fungsi Transfer pada Peramalan Curah Hujan Kabupaten Wonosobo. Jurnal Gaussian 4(4):1037-1044.

Ljung, G.M. and G.E.P. Box 1978. On A Measure of Lack of Fit In Time Series Models. Biometrika 65:297-303.

Khudori, 2014. Perspektif Ekonomi Global Komoditas Aneka Kacang dan Umbi Mendukung Kedaulatan Pangan. Prosiding Semnar Hasil Penelitian Tanaman Aneka Kacang dan Umbi. Malang. Balitkabi.

Marwoto, A. Taufiq, dan Suyamto. 2012. Potensi Pengembangan Tanaman Kedelai di Perkebunan Kelapa Sawit. Jurnal Litbang Pertanian 31(4):169-174.

Pratami, F.R., Sudarno, dan D. Ispriyanti. 2016. Peramalan Dinamis Produksi Padi di Jawa Tengah Menggunakan Metode Koyck dan Almon. Jurnal Gaussian 5(1):91-97.

S. E. Said. and D. A. Dickey. 1984. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 71:599–607.

Santoso, A.B. 2016. Pengaruh Perubahan Iklim terhadap Produksi Tanaman Pangan di Provinsi Maluku. Jurnal Penelitian Pertanian Tanaman Pangan 35(1):29-38.

Simatupang P. 2012. Meningkatkan Daya Saing Ubikayu, Kedelai dan Kacang Tanah untuk Meningkatkan Pendapatan Petani, Ketahanan Pangan, Nilai Tambah dan Penerimaan Devisa. Dalam Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi 2012. Balikabi. Malang.

Suyamto. 2014. Keragaan Galur Harapan Kedelai Umur Genjah dan Biji Besar. Prosiding Semnar Hasil Penelitian Tanaman Aneka Kacang dan Umbi. Malang. Balitkabi.

Zainal, A. 2015.Potensi Pengembangan Tanaman Pangan pada Kawasan HUtan Tanaman Rakyat. Jurnal Litbang Pertanian 34(2):71-78.

Zakaria, A. K., Wahyuning, dan Reni. 2010. Analisis Daya Saing Komoditas Kedelai Menurut Agro Ekosistem: Kasus di Tiga Provinsi di Indonesia. Jurnal Agro Ekonomi. 28(1).




DOI: http://dx.doi.org/10.21082/jpptp.v2n3.2018.p155-163

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Penelitian Pertanian Tanaman Pangan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


P-ISSN: 2541-5166
E-ISSN: 2541-5174
Accredited No.148/M/KPT/2020 by Kemenristek/BRIN


Jurnal Penelitian Pertanian Tanaman Pangan has been indexed by:

       


Editorial Office

Jurnal Penelitian Pertanian Tanaman Pangan

Pusat Penelitian dan Pengembangan Tanaman Pangan
Jln Merdeka no. 147, Bogor 16111, Indonesia
Phone/Fax.: +62-251-8312755 
E-mail: publikasi_puslitbangtan@litbang.pertanian.go.id
Website: http://pangan.litbang.pertanian.go.id

View My Stats