Identifikasi Senyawa Metabolit Ekstrak Akar Padi dan Potensi Alelopati terhadap Gulma Echinochloa crus-galli dan Monochoria vaginalis

Sujinah Sujinah, Dwi Guntoro, Sugiyanta Sugiyanta

Abstract


Allelopathy plays an important role in weed control because it reduces dependence use on synthetic herbicide and labor. Some rice varieties release chemical compounds that can inhibit weed growth. The objective of this research was to identify compounds and to determine the rice allelopathic potential of rice root extract. The experiment was conducted in Regional Health Laboratorium Jakarta and ICRR’s greenhouse, West Java. Identification of metabolite compounds in 10 rice root extracts used GCMS. The experiment in the greenhouse used a split plot design with four replications. The main plot was weeds (Echinochloa crus-galli and Monochoria vaginalis), while the subplot was the roots of 10 swamp rice varieties and control. The rice roots were extracted by the maceration method using 80% methanol and evaporated by a rotary evaporator. The root extract was diluted distilled water at a 50% concentration (w/v) and applied to weeds. The experimental unit was 3 pots planted with 5 weed seeds. The research identified 88 compounds in rice root extract and the highest peak area was stigmasterol compound. The inhibitory of growth and dry weight of weeds varied, between 27-44%. Inpara-3, Inpara-4, Inpara-7, Inpara-8, and Inpara-10 were able to inhibit weeds greater and belong to one cluster. The five swamp rice can be chosen to be developed in paddy fields that were dominated by Echinochloa crus-galli and Monochoria vaginalis.


Keywords


Rice; weed; allelopathy; chemical compound

Full Text:

PDF (Indonesian)

References


Ahn, J.K, S.J. Hanh, J.T. Kim, T.D. Khanh, dan I.M. Chung. 2005. Evaluation of allelopathic potential among rice (Oryza sativa L.) germplasm for control of Echinochloa crus-galli P. Beauv in the field. Crop Protection 24: 413-419.

Alam, M.A., M.A. Hakim, A.S. Juraimi, M.Y. Rafli, M.M. Hasan, dan F. Aslani. 2018. Potential allelopathic effect of rice plant aqueous extract on germination and seedling growth of some rice field common weeds. Italian Journal of Agronomy 13(1006): 134-140.

Al-Samarai, G.F., W.M. Mahdi, dan B.M. Al-Hilali. 2018. Reducing environmental polution by chemical herbicides using natural plant derivates-allelopathy effect. Ann. Agr. Env. Med. 25(3): 449-452.

Ben-Hammouda, M., H. Ghorbal, R.J. Kremer, dan O. Oueslati. 2001. Allelopathic effects of barley extract on germination and seedling growth of bread and durun wheats. Agronomie 21: 65-71.

Chauhan, B.S., V.P. Singh, A. Kumar, dan D.E. Johnson. 2011. Relation of rice seeding rates to crop and weed growth in aerobic rice. Field Crop Research 121: 105-115.

Cheng, F dan Z. Cheng. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanism of allelopathy. Front. Plant Sci. 6(1020): 1-16.

Chon, S.U. dan C.J. Nelson. 2010. Allelopathy in compositae plants. A review. Agron. Sustain. Dev. 30: 349-358.

Chung, I.M., J.K. Ahn, dan S.J. Yun. 2001. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant. Sci. 81: 815-819.

Chung, I.M., T.H. Ham, G.W. Cho, S.W. Kwon, Y. Lee, J. Seo, Y.J. An, S.Y. Kim, dan J. Lee. 2020. Study of quantitative trait loci (QTLs) associated with allelophatic trait in rice. Genes 11(470): 1-9.

Dilday, R.H., J.D. Mattice, K.A. Moldenhauer, dan W. Yan. 2001. Allelopathic potential in rice germplasmn against ducksalad, redstem, and barnyard grass. Journal of Crop Production 4(2): 287-301.

Griebel, T. dan J. Zeier. 2010. A role for β-sitosterol to stigmasterol conversion in plant-pathogen interactions. The Plant Journal 63: 254-268.

Guntoro, D., A.P. Lontoh, dan N.H. Putri. 2016. Pengujian lapangan efektivitas solut-in sebagai triger pada aplikasi herbisida glifosat. hlm. 360-369. Dalam: A.H. Bahrun, H. Iswoyo, R. Dermawan, I. R. Saleh, C.W.B. Yanti, M.D. Ashan, dan Jufriadi (eds). Prosiding Seminar Nasional Perhorti dan Peragi 2016. Makasar: Ficus Press.

Hartmann, M. 1998. Plant sterols and membrane environment. Trends in Plants Science 3: 170-175.

Jensen, L.B., B. Courtois, L. Shen, Z. Li, M. Olofsdotter, dan R.P. Mauleon. 2001. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agronomy Journal 93(1): 21-26.

Kaur, N., J. Chaudary, A. Jain, dan L. Kishore. 2011. Stigmasterol: a comprehensive review. International Journal of Pharmaceutical Sciences and Research 2(9): 2259-2265.

Khaliq, A., A. Matloob, M.B. Khan, dan A. Tanveer. 2013. Differential suppression of rice weeds by allelopathic plant aqueous extracts. Planta Daninha 31(1): 21-28.

Khanh, T.D., I.M. Chung, S. Tawata, dan T.D. Xuan. 2006. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Research 46: 296-303.

Khanh, T.D., T.D. Xuan, dan I.M. Chung. 2007. Rice allelopathy and the possibility for weed management. Annals of Applied Biology 151: 325-339.

Khanh, T.D., L.H. Anh, L.T. Nghia, K.H. Trung, P.B. Hien, D.M. Trung, dan T.D. Xuan. 2018. Allelopathic responses of rice seedling under some different stresses. Plants 7(40): 1-18.

Kwiatkowska, M., B. Huras, dan B. Bukowska. 2014. The effect of metabolites and impurities of glyphosate on human erythrocytes (invitro). Pestic. Biochem. Physiol. 109: 34-43.

Li, Z.H., Q. Wang, X. Ruang, C.D. Pan, dan D.A. Jiang. 2010. Phenolics and plant allelopathy. Molecules 15(12): 8933-8952.

Li, Y., X. Jian, Y. Li, X. Zeng, L. Xu, M.U. Khan, dan W. Lin. 2020. OsPAL2-1 mediates allelopathic interaction between rice and specific microorganisms in the rhizosphere ecosystem. Frontiers in Microbiology 11(1411): 1-16.

Lin, W.X., K.U. Kim, dan D.H. Shin. 2000. Rice allelopathic potential and its modes of action on barnyardgrass (Echinochloa crus-galli). Allelopathy Journal 7(2): 215-224.

Macias, F.A., N. Chincilla, R.M., Varela, dan J.M.G. Molinillo. 2006. Bioactive steroids from Oryza sativa L. Steroids 71: 603-608.

Moon, B.C., O.D. Kwon, S.H. Cho, S.G. Lee, J.G. Won, I.Y. Lee, J.E. Park, dan D.S. Kim. 2012. Modeling the competition effect of Sagittaria trifolia and Monochoria vaginalis weed density on rice in transplanted rice cultivation. Korean J. Weed Sci. 32(3): 188-194.

Paul, J., A.K. Choudhary, V.K. Suri, A.K. Sharma, V. Kumar, dan Shobhna. 2014. Bioresource nutrient recycling and its relationship with biofertility indicators of soil health and nutrient dynamics in rice-wheat cropping system. Commun. Sci. Pl. Annal. 45: 912-924.

Quan, N.V., T.D. Xuan, H.D. Tan, dan N.T.D. Thuy. 2019. Inhibitory activities of momilactones A, B, and 7-Ketogtismasterol isolated from rice husk on paddy and invasive weeds. Plants 8(159): 1-10.

Sadeghloo, A., J. Asghari, dan F. Ghaderi-Far. 2013. Seed germination and seedling of velvetleaf (Abutilon theophrasti) and barnyardgrass (Echinochloa crus-galli). Planta Daninha 31(2): 259-266.

Seal, A.N., J.E. Pratley, T. Haig, dan M. An. 2004. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. Journal of Chemical Ecology 30(8): 1647-1662.

Siyar, S., A. Majeed, Z. Muhammad, H. Ali, dan N. Inayat. 2019. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chloropyhll content of bread wheat. Acta Ecologica Sinica 39: 63-68.

Tomita, S., S. Miyagawa, Y. Kono, C. Noichana, T. Inamura, Y. Nagata, A. Sributta, dan E. Nawata. 2003. Rice yield losses by competition with weeds, in rainfed paddy fields in north-east Thailand. Weed Biology and Management 3: 162-171.

Wang, W.; Y. Li, P. Dang, S. Zhao, D. Lai, dan L. Zhou. 2018. Rice secondary metabolites: structure, roles, biosynthesis, and metabolic regulation. Molecules 23(3098): 1-50.

Wang, X.L., Z.Y. Zhang, X.M. Xu, dan G. Li. 2019. The density of barnyard grass affects photosynthesis and physiological characteristics of rice. Photosynthetica 57(2): 705-711.

Xuan, T.D., I.M. Chung, T.D. Khanh, dan S. Tawata. 2006. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crus-galli) root exudates. J. Chem. Ecol. 32: 895-906.

Zeng, D., Q. Qian, S. Teng, G. Dong, H. Fujimoto, K. Yasufumi, dan L. Zhu. 2003. Genetic analysis of rice allelopathy. Chinese Science Bulletin 48(3): 265-268.

Zhang, Q., L. Li, J. Li, H. Wang, C. Fang, X. Yang, dan H. He. 2018. Increasing rice allelopathy by induction of barnyard grass (Echinochloa crus-galli) root exudates. Journal of Plant Growth Regulation 37: 745-754.




DOI: http://dx.doi.org/10.21082/jpptp.v5n2.2021.p98-106

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Penelitian Pertanian Tanaman Pangan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


P-ISSN: 2541-5166
E-ISSN: 2541-5174
Accredited No.148/M/KPT/2020 by Kemenristek/BRIN


Jurnal Penelitian Pertanian Tanaman Pangan has been indexed by:

       


Editorial Office

Jurnal Penelitian Pertanian Tanaman Pangan

Pusat Penelitian dan Pengembangan Tanaman Pangan
Jln Merdeka no. 147, Bogor 16111, Indonesia
Phone/Fax.: +62-251-8312755 
E-mail: publikasi_puslitbangtan@litbang.pertanian.go.id
Website: http://pangan.litbang.pertanian.go.id

View My Stats