Genetic Diversity Analysis Using Resistance Gene Analog-Based Markers to Support Morphological Characterization of Shallots

Lina Herlina, Reflinur Reflinur, Kristianto Nugroho, Rerenstradika T. Terryana, Sobir Sobir, Awang Maharijaya, Suryo Wiyono


Shallot (Allium cepa var. aggregatum) is one of the most important vegetable crops grown in Indonesia. The limited knowledge available on the genetic diversity and the threat of plant disease have been major problems to maintain high shallot production in Indonesia. Development of molecular markers linked to disease resistance is required for molecular breeding activity in this crop. This study aimed to assess the genetic diversity at conserved domain of resistance gene analog (RGA) in a set of 36 Indonesian shallot genotypes to complement morphological characterization. Twelve morphological and fifteen molecular markers traits were investigated in an attempt to characterize and to discriminate the Indonesian shallots genotypes. Characterization at orphological level indicated that phenotypic variance was highest for total bulb weight (TWB, cv = 99.39%) and the least for the plant height (PH, cv = 28.16%). The correlation analysis between traits showed that TWB and number of bulb (NB), TWB and bulb weight per plant (WB), NB and WB, and WB and PH were positively correlated. Molecular analysis revealed a total of 1,512 alleles with an average of 1.946 alleles per locus. The Polymorphism Information Content (PIC) values ranged from 0.253 to 0.676 and six out of 15 RGA markers were highly informative with PIC values ≥0.50. Based on cluster analysis, the 36 Indonesian shallot genotypes were clearly discriminated into six major groups. These results revealed that the RGA-based markers could support the morphological characterization in evaluating the genetic diversity of shallots. 


Allium cepa; Fusarium; genetic diversity; resistance gene.

Full Text:



Aarts, M.G.M., Hekkert, B.T.L., Holub, E.B., Beynon, J.L., Stiekema, W.J. & Pereira, A. (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 11, 4, 251–258.

Ameline-Torregrosa, C., Wang, B.B., O'Bleness, M.S., Deshpande, S., Zhu, H., Roe, B. et al. (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiology, 146, 5–21.

Baswarsiati, Rahmawati, D. & Abu (2010) Membangun industri perbenihan di Jawa Timur. Cakrawala, 5 (1), 42–52.

Bertini, C.H.C., Schuster, I., Sediyama, T., de Barros, E.G. & Moreira, M.A. (2006) Characterization and genetic diversity analysis of cotton cultivars using microsatellites. Genetics and Molecular Biology, 29, 321–329.

Bouzidi, M., Badaoui, S., Cambon, F., Vear, F., De Labrouhe, D.T., Nicolas, P. & Mouzeyar, S. (2002) Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theoretical and Applied Genetics, 104 (4), 592–600.

Chen, J.Y., Huang, J.Q., Li, N.Y., Ma, X.F., Wang, J.L., Liu, C., Liu, Y.F., Bao, Y.M. & Dai, X.F. (2015) Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biology, 15, 148. doi: 10.1186/s12870-015-0508-3.

Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond‐Kosack, K.E., Di Pietro, A. & Spanu, P.D. (2012) The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13 (4), 414–430.

Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

Govindaraj, M., Vetriventhan, M. & Srinivasan, M. (2015) Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 431487, 1–14. doi: 10.1155/2015/431487.

Hartl, D.L., Freifedler, D. & Snyder, L.A. (1988) Basic Genetics. Jones and Bartlett Publishers.

Isniah, U.S. & Widodo (2015) Eksplorasi Fusarium nonpatogen untuk pengendalian penyakit busuk pangkal pada bawang merah. Jurnal Fitopatologi Indonesia, 11 (1), 14–22.

Kanazin, V., Marek, L.F. & Shoemaker, R.C. (1996) Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Sciences of the United Stats of America, 93 (21), 11746–11750.

Laila, A., Sulistyaningsih, E. & Wibowo, A. (2013) Morphogenetic variation of shallot (Allium cepa L. aggregatum group). Ilmu Pertanian, 16 (2), 1–11. doi: 10.22146/ipas.2529.

Li, P., Quan, X., Jia, G., Xiao, J., Cloutier, S. & Frank, M.Y. (2016) RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics, 17, 852. doi: 10.1186/s12864-016-3197-x.

Liu, J.J. & Ekramoddoullah, A.K. (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Molecular Genetics and Genomics, 270, 432–441.

Michelmore, R.W. & Meyers, B.C. (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research, 8, 1113–1130.

Monaco, M.K., Stein, J., Naithani, S., Wei, S., Dharmawardhana, P., Kumari, S., Amarasinghe, V., Youens-Clark, K., Thomason, J., Preece, J., Olson, A., Jiao, Y., Lu, Z., Bolser, D., Kerhornou, A., Staines, D., Walts, B., Wu, G., D'Eustachio, P., Haw, R., Croft, D., Kersey, P.J., Stein, L., Jaiswal, P. & Ware, D. (2014) Gramene 2013: Comparative plant genomics resources. Nucleic Acids Research, 42, D1193–D1199. doi: 10.1093/nar/gkt1110.

Mutlu, N., Boyaci, F.H., Gocmen, M. & Abak, K. (2008) Development of SRAP, SRAP-RGA, RAPD, and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theoretical and Applied Genetics, 117 (8), 1303–1312.

Nagy, S., Poczai, P., Cernák, I., Gorji, A.M., Hegedűs, G. & Taller, J. (2012) PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics, 50, 670–672.

Naktuinbouw. 2010. Calibration book onion and shallot. Roelofarendsveen.

Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I., Smirnova, T., Grigoriev, I.V. & Dubchak, I. (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Research, 42, D26–D31. doi: 10.1093/nar/gkt1069.

Perazzolli, M., Malacarne, G., Baldo, A., Righetti, L., Bailey, A., Fontana, P., Velasco, R. & Malnoy, M. (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. PLOS One, 9, e83844. doi: 10.1371/journal.pone.0083844.

Perrier, X. & Flori, A. (2003) Methods of data analysis. Genetic diversity of cultivated tropical plants. CRC Press.

Pflieger, S., Lefebvre, V., Caranta, C., Blattes, A., Goffinet, B. & Palloix, A. (1999) Disease resistance gene analogs as candidates for QTLs involved in pepper pathogen interactions. Genome, 42 (6), 1100–1110.

Pinilih, J., Rachmadi, M., Murdaningsih, H.K. & Qosim, W.A. (2015) Kekerabatan 22 klon bawang merah berdasarkan marka mikrosatelit. Indonesian Journal of Applied Sciences, 5 (2), 111–114.

Ren, J., Yu, Y., Gao, F., Zeng, L., Lu, X., Wu, X., Yan, W. & Ren, G. (2013) Application of resistance gene analog markers to analyses of genetic structure and diversity in rice. Genome, 56, 377–387.

Rout, E., Nanda, S., Nayak, S. & Joshi, R.K. (2014) Molecular characterization of NBS encoding resistance genes and induction analysis of a putative candidate gene linked o Fusarium basal rot resistance in Allium sativum. Physiological and Molecular Plant Pathology, 85, 15–24.

Ryan, B.F. & Joiner, B.L. (2001) Minitab handbook. Duxbury Press.

Sari, V. (2017) Keragaman genetik bawang merah (Allium cepa L.) berdasarkan marka morfologi dan ISSR. Jurnal Agronomi Indonesia, 45, 175–181.

Saha, D., Rana, R.S., Sureja, A.K., Verma, M., Arya, L. & Munshi, A.D. (2013) Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato leaf curl New Delhi virus resistant genotype of Luffa cylindrica Roem. Physiological and Molecular Plant Pathology, 81, 107–117.

Sekhwal, M.K., Li, P., Lam, I., Wang, X., Cloutier, S. & You, F.M. (2015) Disease resistance gene analogs (RGAs) in plants. International Journal of Molecular Sciences, 16 (8), 19248–19290.

Selvaraj, C.I., Babu, S., Sankar, P.D., Nagarajan, P. & Sabesan, M. (2011) Genome scanning for identification of resistance gene analogs (RGAs) in a highly durable blast resistance rice (Oryza sativa L.) cultivar, Moroberekan. African Journal of Biotechnology, 10 (34), 6418–6434.

Sharma, T.R., Das, A., Kumar, S.P. & Lodha, M.L. (2009) Resistance gene analogues as a tool for rapid identification and cloning of disease resistance genes in plants 3 a review. Journal of Plant Biochemistry and Biotechnology, 18, 1–11. doi: 10.1007/BF03263289.

Wang, Z.H., Borromeo, E.S., Teng, P. & Leung, H. (2000) Differentiation of rice cultivated in Yunnan, China, using PCR markers corresponding to conserved motifs of disease resistance genes. International Rice Research Notes, 25 (2), 11–12.

Yeh, F.C., Yang, R.C. & Boyle, T. (1999) POPGENE VERSION 1.31: Microsoft Windows-based freeware for population genetic analysis. [Online] Available from: [Accessed 16 April 2018].

Young, N.D. (2000) The genetic architecture of resistance. Current Opinion in Plant Biology, 3, 285–290.

Zhou, B., Dolan, M., Sakai, H. & Wang, G.L. (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Molecular Plant Microbe Interaction, 20, 63–71.



  • There are currently no refbacks.

Copyright (c) 2018 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.