(CRISPR/Cas9 Cassette Construction for OsARF2 Gene Editing and Development of Transgenic Rice Nipponbare Containing CRISPR/Cas9-OsARF2

Muhamad Husni Mubarok, Atmitri Sisharmini, Aniversari Apriana, Tri Joko Santoso, Suharsono Suharsono

Abstract


High Affinity K+ transporter 5 (HAK5) is one of the K + channel that involves in K + uptake. HAK5 gene expression is repressed under K + sufficient condition by the Auxin Response Factor 2 (ARF2) transcription factor. K + absorption can be increased by inactivation of ARF2 gene, e.g. by directed mutation using CRISPR/Cas9 method. The aims of this study were to create CRISPR/Cas9 construct carrying gRNA of OsARF2 gene and obtain transgenic rice Nipponbare containing CRISPR/Cas9- gRNAOsARF2. Two different sites in OsARF2 gene were succesfully designed as gRNA of the gene. Both oligo duplex RNA guides, gRNAOsARF2-A and gRNAOsARF2-B, were ligated into pDIRECT_21A plasmid using Golden Gate method. CRISPR/Cas9-gRNAOsARF2-A and CRISPR/Cas9-gRNAOsARF2-B cassettes were succesfully introduced separately into japonica rice cv. Nipponbare genome via Agrobacterium-mediated transformation, resulting putative transgenic lines. Analysis of Cas9 gene integration by PCR showed that 11 of 28 N-ARF-2-A putative transgenic lines contained Cas9 transgene. The sequencing analysis of the two selected lines showed that the OsARF2 gene of the CRISPR/Cas9-gRNAOsARF2 construct had not been mutated. Further studies are needed to determine the presence of mutations in the OsARF2 gene from other T0 transgenic lines obtained in this study together with that of the T1 transgenic lines.


Keywords


CRISPR/Cas9; OsARF2; gene editing; transformation; Nipponbare

Full Text:

PDF

References


Ahn, S.J., Shin, R. & Schachtman, D.P. (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology. [Online] 134 (3), 1135–1145. Tersedia pada: doi:10.1104/pp.103.034660 [Diakses 19 Juli 2019].

Čermák, T. et al. (2017) A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell. [Online] 29 (6), 1196–1217. Tersedia pada: doi:10.1105/tpc.16.00922 [Diakses 20 November 2019].

Char, S.N. et al. (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal. [Online] 15 (2), 257–268. Tersedia pada: doi:10.1111/pbi.12611 [Diakses 16 Januari 2020].

Clarke, R. et al. (2018) Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated mislodging of Cas9 from double-strand DNA breaks. Molecular cell. [Online] 71 (1), 42-55.e8. Tersedia pada: doi:10.1016/j.molcel.2018.06.005 [Diakses 29 April 2022].

Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. [Online] 19 (Research), 1987, 11–15. Tersedia pada: http://worldveg.tind.io/record/33886 [Diakses 1 Desember 2019].

Gattward, J.N. et al. (2012) Sodium-potassium synergism in Theobroma cacao : stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiologia Plantarum. [Online] 146 (3), 350–362. Tersedia pada: doi:10.1111/j.1399-3054.2012.01621.x [Diakses 18 Juli 2020].

Hawkesford, M. et al. (2012) Functions of Macronutrients.In: Marschner’s Mineral Nutrition of Higher Plants. [Online] Elsevier, pp.135–189. Tersedia pada: doi:10.1016/B978-0-12-384905-2.00006-6 [Diakses 17 Juli 2020].

Hiei, Y. & Komari, T. (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature protocols. [Online] 3 (5), 824–34. Tersedia pada: doi:10.1038/nprot.2008.46 [Diakses 26 November 2019].

Horlbeck, M.A. et al. (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife. [Online] 5. Tersedia pada: doi:10.7554/eLife.12677 [Diakses 29 April 2022].

Li, B., Xie, C. & Qiu, H. (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports. [Online] 28 (3), 373–386. Tersedia pada: doi:10.1007/s00299-008-0640-8 [Diakses 29 April 2022].

Lin, J.-J. (1995) Electrotransformation of Agrobacterium.In: Nickoloff, J.A. (ed.) Electroporation Protocols for Microorganisms. Methods in Molecular BiologyTM. [Online] 47, New Jersey, Humana Press, pp.171–178. Tersedia pada: doi:10.1385/0-89603-310-4:171 [Diakses 4 Desember 2019].

Liu, X. et al. (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B. [Online] 7 (3), 292–302. Tersedia pada: doi:10.1016/j.apsb.2017.01.002 [16 Januari 2020].

McDade, J. (2020) Cas Funtions: Generating Knockout - The PAM Requirement and Expanding CRISPR Beyond SpCas9.In: Tsang, J. (ed.) CRISPR 101 A Desktop Resource. 3rd edition. Addgene [Diakses 11 Februari 2022].

Ren, F. et al. (2019) Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Frontiers in Plant Science. [Online] 10. Tersedia pada: doi:10.3389/fpls.2019.00612 [Diakses 22 Februari 2022].

Sambrook, J. & Russell, D.W. (2001) The Inoue Method for Preparation and Transformation of Competent E. coli: “Ultra-Competent” Cells.In: Sambrook, J. & Russell, D.W. (eds.) Molecular Cloning. 3rd edition. New York, Cold Spring Harbor Laboratory Press [Diakses 5 Desember 2019].

Santoso, T.J. et al. (2020) Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice. IOP Conference Series: Earth and Environmental Science. [Online] 482 (1), 012027. Tersedia pada: doi:10.1088/1755-1315/482/1/012027 [Diakses 12 Februari 2022].

Slamet-Loedin, I.H., Chadha-Mohanty, P. & Torrizo, L. (2014) Agrobacterium-mediated transformation: rice transformation. Methods in molecular biology (Clifton, N.J.). [Online] 1099, 261–71. Tersedia pada: doi:10.1007/978-1-62703-715-0_21 [Diakses 26 November 2019].

Teng, W., He, X. & Tong, Y. (2017) Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. Journal of Integrative Agriculture. [Online] 16 (12), 2657–2673. Tersedia pada: doi:10.1016/S2095-3119(17)61709-X [Diakses 20 November 2019].

Valla, S. & Lale, R. (2014) DNA Cloning and Assembly Methods. Valla, S. & Lale, R. (eds.) [Online] 1116, Totowa, Humana Press. Tersedia pada: doi:10.1007/978-1-62703-764-8 [Diakses 23 Januari 2022].

Véry, A.-A. et al. (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology. [Online] 171 (9), 748–769. Tersedia pada: doi:10.1016/j.jplph.2014.01.011 [Diakses 22 Juli 2019].

Wang, Y. & Wu, W.-H. (2015) Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology. [Online] 25, 46–52. Tersedia pada: doi:10.1016/j.pbi.2015.04.007 [Diakses 22 Januari 2019].

Wang, Y. & Wu, W.-H. (2013) Potassium transport and signaling in higher plants. Annual Review of Plant Biology. [Online] 64 (1), 451–476. Tersedia pada: doi:10.1146/annurev-arplant-050312-120153 [Diakses 13 Februari 2019].

Wang, Y. & Wu, W.-H. (2017) Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology. [Online] 39, 123–128. Tersedia pada: doi:10.1016/j.pbi.2017.06.006 [Diakses 11 Februari 2019].

Wu, X. et al. (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology. [Online] 32 (7), 670–676. Tersedia pada: doi:10.1038/nbt.2889 [Diakses 29 April 2022].

Zhao, S. et al. (2016) Phosphorylation of ARF2 relieves its repression of transcription of the K + transporter gene HAK5 in response to low potassium stress. The Plant Cell. [Online] 28 (12), 3005–3019. Tersedia pada: doi:10.1105/tpc.16.00684 [Diakses 26 November 2019].

Zörb, C., Senbayram, M. & Peiter, E. (2014) Potassium in agriculture – status and perspectives. Journal of Plant Physiology. [Online] 171 (9), 656–669. Tersedia pada: doi:10.1016/j.jplph.2013.08.008 [Diakses 28 Januari 2019].

Zörb, C., Senbayram, M. & Peiter, E. (2014) Potassium in

agriculture – status and perspectives. Journal of Plant

Physiology. [Online] 171 (9), 656–669. Tersedia pada:

https://doi.org/10.1016/j.jplph.2013.08.008 [Diakses 28

Januari 2019].




DOI: http://dx.doi.org/10.21082/jbio.v18n1.2022.p45-56

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.