Isolation and Homology Analysis of Alanine Aminotransferase Gene of Barley, Foxtail Millet, Cucumber, and Tomato

Atmitri Sisharmini, Aniversari Apriana, Tri Joko Santoso, Bambang Sapta Purwoko, Nurul Khumaida, Kurniawan Rudi Trijatmiko

Abstract


Overexpression of alanine aminotransferase (AlaAT) gene can improve nitrogen use efficiency (NUE) in plants. The previous isolated AlaAT genes cannot be freely applied to generate NUE plants due to IPR restriction. Therefore, isolation of the gene from targeted monocot and dicot plants is necessary. The objectives of this study were to isolate AlaAT genes from barley, foxtail millet, cucumber, and tomato and analyze their homology to other isolated AlaAT genes in sequence databases (gene bank). Total RNA was isolated from roots of barley, foxtail millet, cucumber, and tomato, and then converted into cDNA using reverse transcription method. The cDNA was then cloned into pGEM®-T Easy plasmid and the verified clones were sequenced. The amino acid sequences were analyzed for their homologies using Clustal Omega software and phylogenetic tree was constructed. The results showed that the amino acids of AlaAT gene from barley was different from AlaAT genes of tomato and cucumber with homology level less than 80%. Phylogenetic tree predicted that AlaAT genes clustered into three groups with AlaAT genes of foxtail millet and barley clustered in one group together with other monocots in group I. AlaAT genes derived from dicots clustered into two groups in which AlaAT gene of tomato clustered in group II, while that of cucumber was in group III. The identity differences of AlaAT gene of tomato and that of cucumber as well as the estimates of the same enzymatic functions can open up enormous opportunities in genetic engineering research for the development of NUE rice.


Keywords


Alanine aminotransferase gene; amino acid sequence prediction; dendrogram; homology

Full Text:

PDF

References


Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research. [Online] 25 (17), 3389–3402. Tersedia pada: https://doi.org/10.1093/nar/25.17.3389 [Diakses 29 Oktober 2015].

Apriana, A., Sisharmini, A., Enggarini, W., Sudarsono, Khumaida, N. & Trijatmiko, K.R. (2011) Introduksi konstruk over-ekspresi kandidat gen OsWRKY76 melalui Agrobacterium tumefaciens pada tanaman padi Nipponbare. Jurnal AgroBiogen, 7 (1), 19–27.

Catazaro, J., Caprez, A., Guru, A., Swanson, D. & Powers, R. (2014) Functional evolution of PLP-dependent enzymes based on active site structural similarities. Proteins. [Online] 82 (10), 2597–2608. Tersedia pada: https://doi.org/10.1002/prot.24624 [Diakses 21 November 2019].

Duff, S.M.G., Rydel, T.J., McClerren, A.L., Zhang, W., Li, J.Y., Sturman, E.J., Halls, C., Chen, S., Zeng, J., Peng, J., Kretzler, C.N. & Evdokimov, A. (2012) The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure. Archives of Biochemistry and Biophysics. [Online] 528 (1), 90–101. Tersedia pada: https://doi.org/10.1016/ j.abb.2012.06.006 [Diakses 21 November 2019].

Good, A.G. & Beatty, P. (2011) Biotechnological approaches to improving nitrogen use efficiency in plants: Alanine aminotransferase as a case study. In: Hawkesford, M.J. & Barraclough, P. (eds.) The molecular and physiological basis of nutrient use efficiency in crops. New Jersey, John Wiley & Sons, pp. 165–191.

Good, A.G. & Crosby, W.L. (1989) Anaerobic induction of alanine aminotransferase in barley root tissue. Plant Physiology. [Online] 90 (4), 1305–1309. Tersedia pada: https://doi.org/10.1104/pp.90.4.1305 [Diakses 16 September 2019].

Good, A.G., DePauw, M., Kridl, J.C., Theodoris, G. & Shrawat, A.K. (2012) Nitrogen-efficient monocot plants. [Online] Arcadia Biosciences Inc. United States patent number: US 8,288,611 B2. Tersedia pada: https://app.dimensions.ai/downloads/patents?ucid=US-8288611-B2 [Diakses 29 Oktober 2015].

Good, A.G., Johnson, S.J., De Pauw, M., Carrol, R.T., Savidov, N., Vidmar, J., Lu, Z., Taylor, G. & Stroeher, V. (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany. [Online] 85 (3), 252–262. Tersedia pada: https://doi.org/10.1139/B07-019 [Diakses 16 September 2019].

Hashimoto, M., Herai, Y., Nagaoka, K. & Kouno, K. (2007) Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn. Soil Science and Plant Nutrition. [Online] 53 (3), 300–309. Tersedia pada: https://doi.org/10.1111/j.1747-0765.2007.00134.x [Diakses 3 Oktober 2019].

Igarashi, D., Miwa, T., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. & Ohsumi, C. (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. The Plant Journal. [Online] 33 (6), 975–987. Tersedia pada: https://doi.org/10.1046/j.1365-313X.2003.01688.x [Diakses 16 September 2019].

Jehsen, R.A. & Gu, W. (1996) Evolutionary recruitment of biochemical specialized subdivisions of family I within the protein superfamily of aminotransferase. Journal of Bacteriology. [Online] 178 (8): 2161-2171. Tersedia pada: https://pubmed.ncbi.nlm.nih.gov/8636014 [Diakses 21 November 2019].

Kendziorek, M., Paszkowski, A. & Zagdańska, B. (2012) Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings. Plant Cell Reports. [Online] 31 (6), 1105–1117. Tersedia pada: https://doi.org/ 10.1007/s00299-012-1231-2 [Diakses 3 Oktober 2019].

Kikuchi, H., Hirose, S., Toki, S., Akama, K. & Takaiwa, F. (1999) Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa). Plant Molecular Biology. [Online] 39 (1), 149–159. Tersedia pada: https://link.springer.com/article/10.1023/A: 1006156214716 [Diakses 3 Oktober 2019].

Liepman, A.H. & Olsen, L.J. (2003) Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiology. [Online] 131 (1), 215–227. Tersedia pada: https:// doi.org/10.1104/pp.011460 [Diakses 3 Oktober 2019].

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D. & Lopez, R. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research. [Online] 47 (W1), W636–W641. Tersedia pada: https://academic.oup.com/nar/ article/47/W1/W636/5446251 [Diakses 29 Juli 2019].

McAllister, C.H. & Good, A.G. (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS ONE. [Online] 10 (4), e0121830. Tersedia pada: https://doi.org/10.1371/journal.pone.0121830 [Diakses 3 Oktober 2019].

McAllister, C.H., Facette, M., Holt, A. & Good, A.G. (2013) Analysis of the enzymatic properties of a broad family of alanine aminotransferases. PLoS ONE. [Online] 8 (2), e55032. Tersedia pada: https://doi.org/10.1371/ journal.pone.0055032 [Diakses 16 September 2019].

Miyashita, Y., Dolferus, R. & Ismond, K.P. (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. The Plant Journal. [Online] 49 (6), 1108–1121. Tersedia pada: https://doi.org/10.1111/j.1365-313X.2006.03023.x [Diakses 16 September 2019].

Muench, D.G. & Good, A.G. (1994) Hypoxically inducible barley alanine aminotransferase: cDNA cloning and expression analysis. Plant Molecular Biology. [Online] 24 (3), 417–427. Tersedia pada: https://doi.org/ 10.1007/BF00024110 [Diakses 29 Oktober 2015].

Muench, D.G., Christopher, W.E. & Good, A.G. (1998) Cloning and expression of a hypoxic and nitrogen inducible maize alanine aminotransferase gene. Physiologia Plantarum. [Online] 503–512. Tersedia pada: https://doi.org/10.1034/j.1399-3054.1998.1030409.x [Diakses 3 Oktober 2019].

NCBI (1988) National Center for Biotechnology Information. [Online] National Library of Medicine, Bethesda (MD), USA. Tersedia pada: https://www.ncbi.nlm.nih.gov/ [Diakses 29 Oktober 2015].

Palacio, C. (2019) Omega transaminases: Discovery, characterization and engineering. Thesis. Rijksuniversiteit Groningen.

Peng, H.P., Chan, C.S., Shih, M.C. & Yang, S.F. (2001) Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiology. [Online] 126 (2), 742–749. Tersedia pada: https:// doi.org/10.1104/pp.126.2.742 [Diakses 3 Oktober 2019].

Ricoult, C., Echeverria, L.O., Cliquet, J.B. & Limami, A.M. (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. Journal of Experimental Botany. [Online] 57 (12), 3079–3089. Tersedia pada: https://doi.org/ 10.1093/jxb/erl069 [Diakses 3 Oktober 2019].

Rocha, M., Sodek, L., Licausi, F., Hameed, M.W., Dornelas, M.C. & Van Dongen, J.T. (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiology. [Online] 152 (3), 1501–1513. Tersedia pada: https://doi.org/10.1104/pp.109.150045 [Diakses 16 September 2019].

Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning, a laboratory manual. 2nd edition. New York, Cold Spring Harbor Laboratory Press.

Shrawat, A.K., Carrol, R.T., DePauw, M., Taylor, G.J. & Good, A.G. (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnology Journal. [Online] 6 (7), 722–732. Tersedia pada: https://doi.org/10.1111/j.1467-7652.2008.00351.x [Diakses 3 Oktober 2019].

Snyman, S.J., Hajari, E., Watt, M.P., Lu, Y. & Kridl, J.C. (2015) Improved nitrogen use efficiency in transgenic sugarcane: Phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Reports. [Online] 34 (5), 667–669. Tersedia pada: https://doi.org/ 10.1007/s00299-015-1768-y [Diakses 3 Oktober 2019].

Son, D. & Sugiyama, T. (1992) Molecular cloning of an alanine aminotransferase from NAD-malic enzyme type C4 plant Panicum miliaceum. Plant Molecular Biology. [Online] 20 (4), 705–713. Tersedia pada: https://doi.org/10.1007/BF00046455 [Diakses 16 September 2019].

Todd, A.E., Orengo, C.A. & Thornton, M. (2001) Evolution of function in protein superfamilies, from a structural perspective. Journal of Molecular Biology. [Online] 307 (4), 1113–1143. Tersedia pada: https://doi.org/ 10.1006/jmbi.2001.4513 [Diakses 21 November 2019].

Vedavathi, M., Girish, K.S. & Kumar, M.K. (2004) Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver. Molecular and Cellular Biochemistry. [Online] 267 (1–2), 13–23. Tersedia pada: https://doi.org/10.1023/ B:MCBI.0000049354.55955.12 [Diakses 16 September 2019].

Xu, Z., Ma, J., Qu, C., Hu, Y., Hao, B., Sun, Y., Liu, Z., Yang, H., Yang, C., Wang, H., Li, Y. & Liu, G. (2017) Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Scientific Reports. [Online] 7 (April), 1–13. Tersedia pada: https://doi.org/10.1038/srep45933 [Diakses 3 Oktober 2019].




DOI: http://dx.doi.org/10.21082/jbio.v16n2.2020.p59-70

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

         

P-ISSN : 1907-1094
E-ISSN : 2549-1547


Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Call Center: 08211181677
Faks.: (0251) 8338820
E-mail: jurnal.agrobiogen@gmail.com
Situs: http://biogen.litbang.pertanian.go.id



View My Stats