Keragaman Genetik Kemiri [Aleurites moluccana (L.) Willd.] Berdasarkan Barkode DNA Maturase K (matK)

Fajrin Suci Madyasti, Cici Tresniawati, Annisa Annisa

Abstract


Tanaman kemiri [(Aleurites moluccana (L.) Willd.] merupakan tanaman yang memiliki potensi tinggi dan bersifat multiguna dalam berbagai bidang seperti bahan masakan, bahan baku obat-obatan, dan bahan baku industri lainnya. Namun, produksi A. moluccana masih rendah sehingga memerlukan adanya perbaikan-perbaikan dalam praktek budidaya tanaman dan bahan tanam yang berasal dari varietas unggul baru. Informasi keragaman dan kekerabatan genetika diperlukan dalam upaya merakit varietas yang unggul. Penelitian ini bertujuan untuk mengetahui keragaman genetik A. moluccana menggunakan barkode DNA matK. Penelitian ini merupakan penelitian eksploratif dengan menggunakan metode observasi yang meliputi pengoleksian sampel, ekstraksi DNA dengan metode CTAB, kuantifikasi DNA, amplifikasi dengan barkode DNA matK, pengurutan (sekuensing), dan analisis data. Bahan tanaman yang digunakan adalah sebelas aksesi kemiri yang berasal dari Alor, Jatinangor, Majalengka, dan Sukabumi. Analisis keragaman dan kekerabatan dilakukan menggunakan MEGA 11. Hasil observasi menunjukkan gen matK berhasil diamplifikasi dan diurutkan dari seluruh sampel dengan panjang sekuen sekitar 622 bp. Analisis spesifitas sekuen menggunakan BLAST menunjukkan persen identitas sebesar 99,37%-99,68%. Analisis keragaman genetik menunjukkan keragaman nukleotida yang sangat rendah yaitu sebesar 0,00027 dengan jumlah situs polimorfik yaitu 2 dari 618 situs. Rekonstruksi pohon filogenetik dengan metode Neighbor-Joining menghasilkan satu clade tunggal dengan jarak genetik yang sangat rendah. Hal ini menunjukan DNA matK yang digunakan memiliki keragaman genetik yang sangat rendah serta tidak mampu mendiskriminasi aksesi A. moluccana yang terdapat dalam penelitian ini. 


Keywords


BLAST; filogenetik; jarak genetik; mitokondria DNA, sekuensing

Full Text:

PDF

References


Abbas, B., Tjolli, I., & Munarti. (2020). Genetic diversity of sago palm (Metroxylon sagu) accessions based on plastid cpDNA Matk gene as DNA barcoding. Biodiversitas, 21(1), 219–225. https://doi.org/10.13057/biodiv/d210128.

Badan Pusat Statistik, [BPS]. (2014). Produksi Perkebunan Rakyat Menurut Jenis Tanaman 2013-2014. retrieved from https://www.bps.go.id/indicator/54/768/3/produksi-perkebunan-rakyat-menurut-jenis-tanaman.html.

Biswas, S., & Akey, J. M. (2006). Genomic insights into positive selection. Trends in Genetics, 22(8), 437–446. https://doi.org/10.1016/j.tig.2006.06.005.

Chase, M. W., & Hills, H. H. (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon, 40(2), 215–220.

Choi, Y. G., Youm, J. W., Lim, C. E., & Oh, S. H. (2019). Phylogenetic analysis of Viburnum (Adoxaceae) in Korea using DNA sequences. Korean Journal of Plant Taxonomy, 48(3), 206–217. https://doi.org/10.11110/kjpt.2018.48.3.206.

Das, M. M., Mahadani, P., Singh, R., Karmakar, K., & Ghosh, S. K. (2013). Matk sequence based plant DNA barcoding failed to identify bambusa (Family: Poaceae) species from Northeast India. Journal of Environment and Sociobiology, 10(1), 49–54.

Debener, T. (2002). Molecular Markers as a Tool for Analyses of Genetic Relatedness and Selection in Ornamentals. In Breeding For Ornamentals: Classical and Molecular Approaches (pp. 329–345). https://doi.org/10.1007/978-94-017-0956-9_17.

Dharmayanti, N. (2011). Filogenetika molekuler: metode taksonomi organisme berdasarkan sejarah evolusi. Wartazoa, 21(1), 1–10. https://doi.org/10.2307/2799276.

Duangjai, S., Samuel, R., Munzinger, J., Forest, F., Wallnöfer, B., Barfuss, M. H. J., Fischer, G., & Chase, M. W. (2009). A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Molecular Phylogenetics and Evolution, 52(3), 602–620. https://doi.org/10.1016/j.ympev.2009.04.021.

Farre, C. R. (2019). Design and Implementation BLAST Tool Big Data. Universitat de Lleida.

Ismail, M., Ahmad, A., Nadeem, M., Javed, M. A., Khan, S. H., Khawaish, I., Sthanadar, A. A., Qari, S. H., Alghanem, S. M., Khan, K. A., Khan, M. F., & Qamer, S. (2020). Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi Journal of Biological Sciences, 27(12), 3735–3742. https://doi.org/10.1016/j.sjbs.2020.08.020.

Jarvis, P. D., Holland, B. R., & Sumner, J. G. (2017). Phylogenetic Invariants and Markov Invariants ☆. In Reference Module in Life Sciences (pp. 2–4). Elsevier Inc. https://doi.org/10.1016/b978-0-12-809633-8.06903-x.

Kalendar, R., Boronnikova, S., & Seppänen, M. (2021). Isolation and Purification of DNA from Complicated Biological Samples. In Methods in Molecular Biology (pp. 57–67). Springer. https://doi.org/10.1007/978-1-0716-0997-2_3.

Kapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0.

Krisnawati, H., Kallio, M., & Kanninen, K. (2011). Aleurites moluccana (L.) Willd.: Ecology, silviculture and productivity. Center for International Forestry Research. https://doi.org/10.17528/cifor/003393.

Larekeng, S. H., Iswanto, I., Cahyaningsih, Y. F., Restu, M., & Pratiwi, W. (2021). Comparative of PCR success with chloroplast markers for barcoding in selected forestry species. Plant Cell Biotechnology and Molecular Biology, 22(32), 115–122.

Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2014). Plant DNA barcoding : from gene to genome. Biological Review, 1–10. https://doi.org/10.1111/brv.12104.

Li, Y., Feng, Y., Wang, X. Y., Liu, B., & Lv, G. H. (2014). Failure of DNA barcoding in discriminating Calligonum species. Nordic Journal of Botany, 32(4), 511–517. https://doi.org/10.1111/njb.00423.

Low, S. J., Džunková, M., Chaumeil, P. A., Parks, D. H., & Hugenholtz, P. (2019). Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. Nature Microbiology, 4(8), 1306–1315. https://doi.org/10.1038/s41564-019-0448-z.

Mulwa, R. M. S., & Bhalla, P. L. (2007). Assessment of clonal stability of in vitro regenerated shoots of Macadamia tetraphylla by RAPD analysis. Australian Journal of Agricultural Research, 58(3), 253–257. https://doi.org/10.1071/AR06125.

Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., & Hidayat, A. (2021). Genetic diversity and relationships of phalaenopsis based on the rbcL and trnL-F markers: In Silico Approach. Biosaintifika: Journal of Biology & Biology Education, 13(2), 212–221. https://doi.org/10.15294/biosaintifika.v13i2.29904

Mursyidin, D. H., & Makruf, M. I. (2020). Keanekaragaman dan kekerabatan genetik artocarpus berdasarkan penanda DNA kloroplas matK & rbcL: Kajian In Silico. Floribunda, 6(5), 195–206. https://doi.org/10.32556/floribunda.v6i5.2020.322.

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. https://doi.org/10.1073/pnas.76.10.5269.

Niazian, M., & Niedbała, G. (2020). Machine learning for plant breeding and biotechnology. Agriculture, 10(436), 1–23. https://doi.org/10.3390/agriculture10100436.

Rashno, M., Shapouri, M. R. S. A., & Jolodar, A. (2012). Construction of a synthetic vector for preparation of a 100 base pair DNA ladder. Iranian Journal of Biotechnology, 10(2), 106–110.

Russo, C. A. D. M., & Selvatti, A. P. (2018). Bootstrap and rogue identification tests for phylogenetic analyses. Molecular Biology and Evolution, 35(9), 2327–2333. https://doi.org/10.1093/molbev/msy118.

Samal, K. C., Sahoo, J. P., Behera, L., & Dash, T. (2021). Understanding the BLAST (Basic Local Alignment Search Tool) Program and a Step-by-step Guide for its use in Life Science Research. Bhartiya Krishi Anusandhan Patrika, 1–7. https://doi.org/10.18805/bkap283.

Samuel, R., Kathriarachchi, H., Hoffmann, P., Barfuss, M. H. J., Wurdack, K. J., Davis, C. C., & Chase, M. W. (2005). Molecular phylogenetics of Phyllanthaceae: Evidence from plastid MatK and nuclear PHYC sequences. American Journal of Botany, 92(1), 132–141. https://doi.org/10.3732/ajb.92.1.132.

Susilowati, A., Dalimunthe, A., Rachmat, H. H., Elfiati, D., Sinambela, P. Y., Ginting, I. M., & Larengkeng, S. H. (2020). Morphology and germination of the candlenut seed (Aleurites moluccana) from Samosir Island-North Sumatra. IOP Conference Series: Earth and Environmental Science, 454(1). https://doi.org/10.1088/1755-1315/454/1/012156.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585.

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101.

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120.

Tateno, Y., Takezaki, N., & Nei, M. (1994). Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Molecular Biology and Evolution, 11(2), 261–277. https://doi.org/10.1093/oxfordjournals.molbev.a040108.

Trivedi, S., Rehman, H., Saggu, S., Panneerselvam, C., & Ghosh, S. K. (2018). DNA Barcoding and Molecular Phylogeny. Springer International Publishing. https://doi.org/10.1007/978-3-319-90680-5_27.

Valuyskikh, O. E., Teteryuk, L. V., Pylina, Y. I., Sushentsov, O. E., Martynenko, N. A., & Shadrin, D. M. (2020). Phylogenetic relationships and status of taxa of Pulsatilla uralensis and P. patens s.str. (Ranunculaceae) in north-eastern European Russia. PhytoKeys, 162, 113–130. https://doi.org/10.3897/PHYTOKEYS.162.53361.

Van de Peer, Y. (2009). Phylogenetic inference based on distance methods. In The Phylogenetic Handbook (pp. 142–180). Cambridge University Press. https://doi.org/10.1017/cbo9780511819049.007.

Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8(7), 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x.

Wang, B., Mojica, J. P., Perera, N., Lee, C. R., Lovell, J. T., Sharma, A., Adam, C., Lipzen, A., Barry, K., Rokhsar, D. S., Schmutz, J., & Mitchell-Olds, T. (2019). Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta (Genome Biol (2019) 20:126 DOI: 10.1186/s13059-019-1729-9). Genome Biology, 20(1), 1–15. https://doi.org/10.1186/s13059-019-1781-5.

Wu, X., Duan, L., Chen, Q., & Zhang, D. (2020). Genetic diversity, population structure, and evolutionary relationships within a taxonomically complex group revealed by AFLP markers: A case study on Fritillaria cirrhosa D. Don and closely related species. Global Ecology and Conservation, 24. https://doi.org/10.1016/j.gecco.2020.e01323.

Yang, Z., & Yoder, A. D. (1999). Estimation of the transition/transversion rate bias and species sampling. Journal of Molecular Evolution, 48(3), 274–283. https://doi.org/10.1007/PL00006470.




DOI: http://dx.doi.org/10.21082/jtidp.v9n2.2022.p87-96

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                  


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats