The Effects of Gamma-Ray Irradiation on The Growth of Apical And Axillary Bud Cuttings of Arabica Coffee

Meynarti Sari Dewi Ibrahim, Enny Randriani

Abstract


The Arabica coffee is predominantly self-pollinated plants thereby contributing to low genetic diversity. The effort to increase the genetic diversity of Arabica coffee through crossing strategy is time-consuming, and induce mutation is necessary to enhance the rate of genetic variation. The aims of this study were to observe the effect of gamma-ray irradiation on the growth of apical and axillary bud cuttings and to determine the value of LD50 on apical cuttings and Arabica coffee axillaries. The study was conducted at the Tissue Culture Laboratory, Industrial and Beverage Crops Research Institute, from January to December in 2018.. The planting material that was irradiated was Arabica coffee plantlets resulting from somatic embryogenesis propagation. Irradiation is carried out at the National Nuclear Energy Agency. The irradiated plantlets were cut and subcultured onto MS medium without growth regulators, 30 g L-1 sucrose, and 2.5 g L-1 phytagel were added. The design used a completely randomized design with 10 replications. The treatments tested were the dose of gamma-ray irradiation (0, 10, 20, 30, 40, and 50 Gy). The results showed that gamma-ray irradiation had an effect on all observed parameters. The mortality percentage of apical shoot cuttings began to be found at 30 Gy, while axillary cuttings at 20 Gy increased with an increasing dose of gamma-ray irradiation. The number of shoots and leaves varied between irradiation doses on both apical and axillary cuttings. The LD50 value of apical shoot cuttings was 36.80 Gy, while axillary cuttings were 22.24 Gy


Keywords


Coffea arabica; mutation induction; LD50; growth; plantlet

Full Text:

PDF (Indonesian)

References


Abdulhafiz, F., Kayat, F., & Zakaria, S. (2018). Effect of gamma irradiation on the morphological and physiological variation from In vitro individual shoot of banana cv. Tanduk (Musa spp.). Journal of Plant Biotechnology, 45(2), 140–145. https://doi.org/10.5010/JPB.2018.45.2.140

Arrieta, N., Cespedes, R., & Barquero, M. (2018). Radiosensitivity Test on Gamma Irradiated Coffea Arabica Var. Venecia In Vitro Zygotic Embryos, 132–133. FAO/Interbational Symposium on Plant Mutation Breeding and Biotechnology; Vienna(Austria); 27-23 Augustus 2018..

Ashraf, M., Cheema, A, L., Rashid, M., & Zia-Ul-Qamar. (2003). Effect of gamma rays on M1 generation in Basmati rice. Pak. J. Bot, 35(5), 791–795. https://doi.org/10.20546/ijcmas.2018.708.464

Banerjee, A., Penna, S., Variyar, P. S., & Sharma, A. (2015). Gamma irradiation inhibits wound induced browning in shredded cabbage. Food Chemistry, 173, 38–44. https://doi.org/10.1016/j.foodchem.2014.09.166

Cahyo, F. A., & Dinarti, D. (2015). Pengaruh iradiasi sinar gamma terhadap pertumbuhan Protocorm Like Bodies anggrek Dendrobium lasianthera (JJ. Smith) secara in vitro. Jurnal Hortikultura Indonesia, 6(3), 177. https://doi.org/10.29244/jhi.6.3.177-186

Christopher, H., Tan, G. Y., Daymond, A. J., Hadley, P., Machado, R. C. R., Ng, E., … Adeigbe, O. O. (2013). Cacao’s Relationship with Mesoamerican society. New Zealand Journal of Crop and Horticultural Science, 6(2), 157–170. https://doi.org/10.1080/0028825x.2010.488786

Dada, K. E., Anagbogu, C. F., Forster, B. P., Muyiwa, A. A., Adenuga, O. O., Olaniyi, O. O., & Bado, S. (2018). Biological effect of gamma irradiation on vegetative propagation of Coffea arabica L. African Journal of Plant Science, 12(6), 122–128. https://doi.org/10.5897/ajps2016.1504

Datta, S. K. (2014). Induced Mutagenesis: Basic knowledge for technological success. In Mutagenesis: exploring genetic diversity of crops. Tomlekova, N., Kozgar, M. & Wani .M (Eds.), (pp. 97–140). Wageningen Academic Publishers.

Datta, S. K. (2019). Determination of radiosensitivity: Prerequisite factor for induced mutagenesis. In Harnessing Plant Biotechnology and Physiology to Stimulate Agricultural Growth (pp. 39–54).

Etienne, H. (2005). Somatic embryogenesis protocol: Coffee (Coffea arabica L. and C. canephora P.) In Jain SM, Gupta PK. (eds). Protocol for somatic embryogenesis in woody plants. In S. Mohan Jain & P. K. Gupta (Eds.), Forestry Sciences (7th ed.). https://doi.org/10.1007/1-4020-2985-3_14

Ibrahim, M. S. D., Hartati, R. R. S., Rubiyo, Purwito, A., & Sudarsono. (2015). The induction of primary and secondary somatic embryo to support Arabica coffee propagation. Journal of Tropical Crop Science, 2(3), 6–13. https://doi.org/10.29244/jtcs.2.3.6-13

Ibrahim, M. S. D., & Randriani, E. (2019). Response of embryogenic calii of Arabica coffee var. Kartika against gamma irradiation. Book Abtracts, The Korean Society of Breeding Science and Society for the Advancement of the Breeding Research in Asia and Ocenia International Conference on Plant Breeding for Sustainable Development 2 nd - 5 th July 2019. Kimdaejung Convention Center Gwangju, Republic of Korea.

Ibrahim, M. S. D., Randriani, E., Sari, L., & Nuraini, A. (2019). Radiosensitivitas kalus embriogenik kopi Robusta BP 436 terhadap iradiasi sinar gamma. Jurnal Tanaman Industri dan Penyegar, 6(1), 41. https://doi.org/10.21082/jtidp.v6n1.2019.p41-50

Imelda, M., Sari, L., & Wulansari, A. (2011). Pengaruh radiasi sinar gamma terhadap pertumbuhan dan perubahan fenotipe tunas in vitro lidah buaya (Aloe vera). J. Tek. Ling, 12(2), 153–160.

Ismaini, L., Normasiwi, S., & Surya, M. I. (2018). Study on in vitro growth of rubus fraxinifolius mutant (m1) resulted from gamma-ray irradiation (60 Co). 6(2), 70–76. https://doi.org/10.18196/pt.2018.082.70-76

Jain, S. Mohan. (2010). Mutagenesis in crop improvement under the climate change. Romanian Biotechnological Letters, 15(SUPPL.2), 88–106.

Jain, S.M., & Suprasanna, P. (2011). Induced mutations for enhancing nutrition and food production. Geneconserve, 40(June), 201 – 215.

Kiong, A. L. P., Lai, A. G., Hussein, S., & Harun, A. R. (2008). Physiological responses of Orthosiphon stamineus plantles to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture, Vol. 2, pp. 135–149.

Kovacs, E. and Keresztes, A. (2002) Effect of Gamma and UV-B/C Radiation on Plant Cell. Micron, 33, 199-210. https://doi.org/10.1016/S0968-4328(01)00012-9

Mba, C., Afza, R., Bado, S., & Jain, S. M. (2010). Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture: Essential Methods, (August 2018), 111–130. https://doi.org/10.1002/9780470686522.ch7

Mbaye, G., Soumboundou, M., Diouf, L. A. D., Ndong, B., Djiboune, A. R., Sy, P. M., … Diarra, M. (2017). Evaluation of the effects of irradiation of peanut grain by a gamma-ray beam on culture. Open Journal of Biophysics, 07(03), 94–100. https://doi.org/10.4236/ojbiphy.2017.73008

Muthusamy, A., & Jayabalan, N. (2014). Radiation and chemical mutagen induced somaclonal variations through in vitro organogenesis of cotton (Gossypium hirsutum L.). International Journal of Radiation Biology, 90(12), 1229–1239. https://doi.org/10.3109/09553002.2014.923589

Penna, S., & Jain, S. M. (2017). Mutant resources and mutagenomics in crop plants. Emirates Journal of Food and Agriculture, 29(9), 651–657. https://doi.org/10.9755/ejfa.2017.v29.i9.86

Quintana, V., Alvarado, L., Alvarado, L., Saravia, D., Saravia, D., Borjas, R., … Gómez, L. (2019). Gamma radiosensitivity of coffee (Coffea arabica L. var. typica). Peruvian Journal of Agronomy, 3(2), 74. https://doi.org/10.21704/pja.v3i2.1317

Rosmala, A., Khumaida, N., & Sukma, D. (2015). Perubahan morfologi dan pertumbuhan handeuleum (Graptophyllum pictum L. Griff ) akibat iradiasi sinar gamma. J. Agron. Indonesia, 43(3), 235–241.

Royani, J. I., Purwito, A., & Sumaryono, W. (2012). Prosiding seminar nasional POKJANAS TOI XLII. Pengaruh Irradiasi Gamma Cobalt 60 Terhadap Karakter Morfologi Tanaman Obat Sambiloto (Andrographis Paniculata (Burm.f) Wallich Ex Ness), 1, 63–76.

Shahzad, S. M., Arif, M. S., Riaz, M., Ashraf, M., Yasmeen, T., Zaheer, A., … Robroek, B. J. M. (2017). Interaction of compost additives with phosphate solubilizing rhizobacteria improved maize production and soil biochemical properties under dryland agriculture. Soil and Tillage Research, 174(October 2016), 70–80. https://doi.org/10.1016/j.still.2017.06.004

Sianipar, N.F., Wantho, A., Rustikawati, & Maarisit, W. (2013). The effects of gamma irradiation on growth response of rodent tuber (Typhonium flagelliforme Lodd.) mutant in invitro culture. HAYATI Journal of Biosciences, 20(2), 51–56. https://doi.org/10.4308/hjb.20.2.51

Soeranto, H. (2003). Peran iptek nuklir dalam pemuliaan tanaman untuk mendukung industri pertanian. Teknologi Isotop Dan Radiasi, Badan Tenaga Nuklir, 308–316. Prosiding Pertemuan dan Presentasi Ilimiah Peneiltian Dasar IImu Pengetahuan dan Teknologi Nuklir P3TM - BATAN Yogyakarta, 308 - 316.

Suprasanna, P., Mirajkar, S. J., & Bhagwat, S. G. (2015). Induced mutations and crop improvement, in: Bir Bahadur, M.V. Rajam, Leela Sahijram, K.V. Krishnamurthy (Eds.), , Springer, 2015, pp. 593–618. In B. Bahadur, M. V. Rajam, K. V. Leela Sahijram, & Krishnamurthy (Eds.), Plant Biology and Biotechnology (1st ed., pp. 593–618). spinger.

Tshilenge-Lukanda, L., Kalonji-Mbuyi, A., Nkongolo, C. K. K., & Kizungu, R. V. (2013). Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). American Journal of Plant Sciences, 04(11), 2186–2192. https://doi.org/10.4236/ajps.2013.411271

Yalindua, A., Setiawan, A., & Bintoro, H. M. H. (2014). The aplication of mutation induction by gamma irradiation on cultivars yam ( Dioscorea alata L .) from banggai islands , Indonesia of. 5(2), 46–54.

Yunita, R., Khumaida, N., Sopandie, D., & Mariska, I. (2016). Pengaruh iradiasi sinar gama terhadap pertumbuhan dan regenerasi kalus padi varietas Ciherang dan Inpari 13. Jurnal AgroBiogen, 10(3), 101. https://doi.org/10.21082/jbio.v10n3.2014.p101-108




DOI: http://dx.doi.org/10.21082/jtidp.v7n3.2020.p137-148

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats