The Effectiveness of Bioinsecticide Based on Entomopathogenic Fungi of Talaromyces Pinophilus and Vegetable Oil on Coffee Berry Borer

Khaerati Khaerati, Gusti Indriati, Edi Wardiana

Abstract


The coffee berry borer (CBB) Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), is one of the main pests that cause yield losses in coffee plants. This pest directly attacks the coffee berries, both immature and ripe. The entomopathogenic fungi is one of the potential biological agents for CBB, environmentally friendly and does not kill non-target organisms. The study was conducted at the Integrated Laboratory, Industrial and Beverage Crop Research Institute, from June to October 2018. The aim of this study was to examine the effectiveness of bioinsecticide based on entomopathogenic fungus of Talaromyces pinophilus (EFTP) and vegetable oil on CBB. The completely randomized design with 31 treatments and 3 replications was used in this study. The 31th of treatments consisted of 9 formulas of bioinsecticide based on EFTP and vegetable oil, control-positive (bioinsecticide based on EFTP and water), and control- negative (Klorpirifos insecticide). Variables observed were the activities of EFTP enzyme, effectiveness of vegetable oil as a carrier material, mortality of CBB beetles, percentage of CBB attacks, percentage of hollow berries, and number of holes per 10 coffee berries. Results showed that the formula of bioinsecticide based on EFTP produce the chitinase and protease enzymes which were potential as biological agents to control CBB in vitro. Soybean oil is the most effective as a carrier material in formulating EFTP. The formula of S69MK30 and S79MK20 in concentration of 7.50% respectively have the highest potential as biological agents to control CBB. Other potential formula is S69MKT30 in concentration of 7.50%.

Keywords


Biocontrol; carrier material; chitinase; Hypothenemus hampei; protease; vegetable oil

Full Text:

PDF (Indonesian)

References


Abdel-Rahim, I. R., & Abo-Elyousr, K. A. M. (2018). Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiological Research, 212–213(November 2017), 1–9. https://doi.org/10.1016/j.micres.2018.04.004.

Alves, R. T., Bateman, R. P., Gunn, J., Prior, C., & Leather, S. R. (2002). Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae conidia. Neotropical Entomology, 31(1), 91–99. https://doi.org/10.1590/s1519-566x2002000100013.

Alves, S. B., Tamai, M. A., Rossi, L. S., & Castiglioni, E. (2005). Beauveria bassiana pathogenicity to the citrus rust mite Phyllocoptruta oleivora. Experimental and Applied Acarology, 37(1–2), 117–122. https://doi.org/10.1007/s10493-005-0314-y.

Angelo, I. C., Fernandes, É. K. K., Bahiense, T. C., Perinotto, W. M. S., Moraes, A. P. R., Terra, A. L. M., & Bittencourt, V. R. E. P. (2010). Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus m.icroplus. Veterinary Parasitology, 172(3–4), 317–322. https://doi.org/10.1016/j.vetpar.2010.04.038.

Balakrishnan, M. M., & Naik, P. R. (2014). Infectivity of ten Metarhizium anisopliae isolates to the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae). Journal of Entomology and Zoology Studies, 2(5), 246–249.

Batta, Y. A. (2016). Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi. MethodsX, 3, 119–127. https://doi.org/10.1016/j.mex.2016.02.001.

Behle, R. W., Compton, D. L., Laszlo, J. A., & Shapiro-Ilan, D. I. (2009). Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia. Journal of Economic Entomology, 102(5), 1759–1766. https://doi.org/10.1603/029.102.0505.

Butt, T. M., & Goettel, M. S. (2009). Bioassays of entomogenous fungi. Bioassays of Entomopathogenic Microbes and Nematodes., (June), 141–195. https://doi.org/10.1079/9780851994222.0141.

Camargo, M. G., Golo, P. S., Angelo, I. C., Perinotto, W. M. S., Sá, F. A., Quinelato, S., & Bittencourt, V. R. E. P. (2012). Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, 188(1–2), 140–147. https://doi.org/10.1016/j.vetpar.2012.03.012.

Damon, A. (2000). A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) . Bulletin of Entomological Research, 90(6), 453–465. https://doi.org/10.1017/s0007485300000584.

Gan, Z., Yang, J., Tao, N., Liang, L., Mi, Q., Li, J., & Zhang, K.-Q. (2007). Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Applied Microbiology and Biotechnology, 76(6), 1309–1317. https://doi.org/10.1007/s00253-007-1111-9.

Gaspersz, V. (1992). Teknis analisis dalam penelitian percobaan. (pp. 329-333). Penerbit Tarsito, Bandung.

Haraprasad, N., Niranjana, S. R., Prakash, H. S., Shetty, H. S., & Wahab, S. (2001). Beauveria bassiana - A potential mycopesticide for the efficient control of coffee berry borer, Hypothenemus hampei (Ferrari) in India. Biocontrol Science and Technology, 11(2), 251–260. https://doi.org/10.1080/09583150120035675.

Harrison, R. L., & Bonning, B. C. (2010). Proteases as insecticidal agents. Toxins, 2(5), 935–953. https://doi.org/10.3390/toxins2050935.

Hartl, L., Zach, S., & Seidl-Seiboth, V. (2012). Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93(2), 533–543. https://doi.org/10.1007/s00253-011-3723-3.

Jaramillo, J., Chabi-Olaye, A., Kamonjo, C., Jaramillo, A., Vega, F. E., Poehling, H. M., & Borgemeister, C. (2009). Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of climate change impact on a tropical insect pest. PLoS ONE, 4(8), 1–11. https://doi.org/10.1371/journal.pone.0006487.

Kazerooni, E. A., Rethinasamy, V., & Al-Sadi, A. M. (2019). Talaromyces pinophilus inhibits Pythium and Rhizoctonia - induced damping-off of cucumber. Journal of Plant Pathology, 101, 377–383.

Khan, S., Guo, L., Shi, H., Mijit, M., & Qiu, D. (2012). Bioassay and enzymatic comparison of six entomopathogenic fungal isolates for virulence or toxicity against green peach aphids Myzus persicae. African Journal of Biotechnology, 11(77), 14193–14203. https://doi.org/10.5897/ajb12.1592.

Kirubakaran, S. A., Sathish-Narayanan, S., Revathi, K., Chandrasekaran, R., & Senthil-Nathan, S. (2014). Effect of oil-formulated Metarhizium anisopliae and Beauveria bassiana against the rice leaffolder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Archives of Phytopathology and Plant Protection, 47(8), 977–992. https://doi.org/10.1080/03235408.2013.828388.

Kisaakye, J. (2014). Talaromyces sp. as a potential bio-control agent against Pratylenchus zeae infection of rice (Oryza sativa L.). (Master's Thesis, Dept. Biology, Faculty of Science, Ghent University).

Langner, T., Öztürk, M., Hartmann, S., Cord-Landwehr, S., Moerschbacher, B., Walton, J. D., & Göhrea, V. (2015). Chitinases are essential for cell separation in Ustilago maydis. Eukaryotic Cell, 14(9), 846–857. https://doi.org/10.1128/EC.00022-15.

Latifian, M. (2018). Physicochemical properties affects on different oil formulations on fungus Metarhizium anisopliae for control of Oryctes elegans. Journal of Entomology, 15(2), 83–92. https://doi.org/10.3923/je.2018.83.92.

Lopes, R. B., & Faria, M. (2019). Influence of two formulation types and moisture levels on the storage stability and insecticidal activity of Beauveria bassiana. Biocontrol Science and Technology, 29(5), 437–450. https://doi.org/10.1080/09583157.2019.1566436.

Lopes, R. B., Pauli, G., Mascarin, G. M., & Faria, M. (2011). Protection of entomopathogenic conidia against chemical fungicides afforded by an oil-based formulation. Biocontrol Science and Technology, 21(2), 125–137. https://doi.org/10.1080/09583157.2010.534548.

Maity, A., Pal, R. K., Chandra, R., & Singh, N. V. (2014). Penicillium pinophilum-A novel microorganism for nutrient management in pomegranate (Punica granatum L.). Scientia Horticulturae, 169, 111–117. https://doi.org/10.1016/j.scienta.2014.02.001.

Majumder, M. S. I., Islam, M. K., Akamine, H., Sano, A., Onjo, M., & Hossain, M. A. (2019). Comparative study of phosphate solubilization potential of Talaromyces pinophilus strains. Applied Ecology and Environmental Research, 17(6), 14973–14984. https://doi.org/10.15666/aeer/1706_149731498.

Malsam, O., Kilian, M., Oerke, E. C., & Dehne, H. W. (2002). Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Science and Technology, 12(3), 337–348. https://doi.org/10.1080/09583150220128121.

Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206(24), 4393–4412. https://doi.org/10.1242/jeb.00709.

Mola, L. F., & Afkari, R. (2012). Effects of different vegetable oils formulations on temperature tolerance and storage duration of Beauveria bassiana conidia. African Journal of Microbiology Research, 6(22), 4707–4711. https://doi.org/10.5897/ajmr11.1372.

Mondal, S., Baksi, S., Koris, A., & Vatai, G. (2016). Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Natural Science and Engineering, 18(2), 85–99. https://doi.org/10.1016/j.psra.2016.10.001.

Moslim, R., Wahid, M. B., Ali, S. R. A., & Kamarudin, N. (2004). The effect of oils on germination of Beauveria bassiana (Balsamo) vuillemin and its infection againts the oil palm bagworm, Metisa plana (Walker). Journal of Oil Palm Research, 16(2), 78–87.

Nithya, P. R., & Reji Rani, O. P. (2017). Evaluation of carrier materials for formulating entomopathogenic fungus Lecanicillium Lecanii (Zimmermann) Zare and Gams. Journal of Biological Control, 31(1), 50–55. https://doi.org/10.18311/jbc/2017/15556.

Pérez, J., Infante, F., & Vega, F. E. (2005). Does the coffee berry borer (Coleoptera: Scolytidae) have mutualistic fungi? Annals of the Entomological Society of America, 98(4), 483–490. https://doi.org/10.1603/0013-8746(2005)098[0483:dtcbbc]2.0.co;2.

Peterson, S.W., & Jurjević, Z. (2019). The Talaromyces pinophilus species complex. Fungal Biology, 123, 745-762.

Polar, P., Kairo, M. T. K., Moore, D., Pegram, R., & John, S. A. (2005). Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia, 160(2), 151–157. https://doi.org/10.1007/s11046-005-0120-4

Prayogo, Y. (2006). Upaya mempertahankan keefektifan cendawan entomopatogen untuk mengendalikan hama tanaman pangan. Jurnal Litbang Pertanian, 25(2), 47–54. https://doi.org/10.21082/bulpalawija.v0n10.2005.p53-65.

Sánchez-Pérez, L. C., Barranco-Florido, J. E., Rodríguez-Navarro, S., Cervantes-Mayagoitia, J. F., & Ramos-López, M. Á. (2014). Enzymes of entomopathogenic fungi, advances and insights. Advances in Enzyme Research, 02(02), 65–76. https://doi.org/10.4236/aer.2014.22007.

Sari, L.A., & Widyaningrum, T. (2014). Uji patogenitas spora jamur Metarhizium anisopliae terhadap mortalitas hama Hypothenemus hampei (Ferrari) sebagai bahan ajar biologi SMA kelas X. JUPEMASI-PBIO, 1(1), 26-32. ISSN: 2407-1269.

Sembiring, M., Elfiati, D., Sutarta, E. S., & Sabrina, T. (2015). Peningkatan ketersediaan fosfat dan produksi tanaman kentang (Solanum tuberosum L.) dengan menggunakan Talaromyces pinophilus indigenous dan pupuk SP36 pada Andisol terdampak erupsi Gunung Sinabung. Jurnal Pertanian Tropik, 2(3), 323–329.

Sembiring, M., Jefri, Sakiah, & Wahyuni, M. (2018). The inoculation of mycorrhiza and Talaromyces pinophilus toward the improvement in growth and phosphorus uptake of oil palm seedlings (Elaeis guineensis Jacq.) on saline soil media. Bulgarian Journal of Agricultural Science, 24(4), 617–622.

Sultana, R., Kumar, S., & Yanar, D. (2017). Application of entomopathogenic fungi for insect pests control. Journal of Entomology and Zoology Studies, 5(6), 07–13.

Suryanto, D., Patonah, S., & Munir, E. (2010). Control of fusarium wilt of chili with chitinolytic bacteria. HAYATI Journal of Biosciences, 17(1), 5–8. https://doi.org/10.4308/hjb.17.1.5.

Sussana, Sinaga, M. S., Wiyono, S., & Triwidodo, H. (2018). Pemanfaatan cendawan antagonis in situ sebagai agens biokontrol Lasiodiplodia theobromae penyebab dieback pada pala di Aceh Selatan. Jurnal Pertanian Tropik, 58, 447–454.

Vega-Aquino, P., Sanchez-Peña, S., & Blanco, C. A. (2010). Activity of oil-formulated conidia of the fungal entomopathogens Nomuraea rileyi and Isaria tenuipes against lepidopterous larvae. Journal of Invertebrate Pathology, 103(3), 145–149. https://doi.org/10.1016/j.jip.2009.12.002

Vinale, F., Nicoletti, R., Lacatena, F., Marra, R., Sacco, A., Lombardi, N., … Woo, S. L. (2017). Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Natural Product Research, 31(15), 1778–1785. https://doi.org/10.1080/14786419.2017.1290624.

White, T.J., Bruns, T.D., Lee, S.B., & Taylor. J.W. (1990). Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., & White, T.J. (eds). PCR protocols (pp, 315-322). Academic, San Diego.

Widhyastuti, N. & Dewi, R. M. (2001). Isolasi bakteri proteolitik dan optimasi produksi protease. Laporan Teknik Proyek Inventarisasi dan Karakterisasi Sumberdaya Hayati. Pusat Penelitian Biologi - LIPI. Bogor.

Zhai, M.-M., Li, J., Jiang, C.-X., Shi, Y.-P., Di, D.-L., Crews, P., & Wu, Q.-X. (2016). The bioactive secondary metabolites from Talaromyces species. Natural Products and Bioprospecting, 6(1), 1–24. https://doi.org/10.1007/s13659-015-0081-3.




DOI: http://dx.doi.org/10.21082/jtidp.v7n2.2020.p93-108

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats