Early Identification of Morpo-Physiological Traits Divergence Among Four Arabica Coffee Cultivars

Dani Dani, Dewi Nur Rokhmah, Dibyo Pranowo

Abstract


Arabica coffee is a perennial crop hence it has a long selection cycle.  Therefore, efforts to shorten the selection process is necessary, such as at seedling stage.  This study aims to identify morpho-physiological characters variability among Arabica coffee cultivars at seedling stage. The experiment was conducted at Pakuwon Experimental Garden of Indonesian Industrial and Beverage Crops Research Institute, Sukabumi, from January to October 2017. Seeds collected from open pollinated trees of four arabica coffee cultivars (Ateng Super, P88, Gayo 1, and Gayo 2) were then sown on seedbed and newly-emerged cotyledonous seedlings were transferred immediately into polyethylene bag (polybag). Seedlings were arranged in randomized complete block with 5 replications, each consisted of 10 seedlings of each cultivar. Morpho-physiological characters observed and analyzed were shoot (plant height, lateral shoot formation, number of internodes, internode length, stem diameter, shoot’s dry weight); leaves (number of leaves, leaf length, leaf width, L/W ratio, leaf area, stomata density , chlorophyll content); and root (root length, number of primary roots, root volume, root’s dry weight, root/shoot ratio). The result showed value of genetic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), and broad sense heritability (h2bs) of plant height characters are classified as high, each of which is 21.66%; 23.66%; and 0.84, respectively. The characters of the stem length and leaf width showed high h2bs value (0.97 and 0.67 respectively), while the KKG and KKF values were classified as moderate (19.60% and 19.88%, respectively and 10.71% and 13.10%, respectively). Those three characters could be utilized as distincitive markers of the four Arabica coffee cultivars.

Keywords


Arabica coffee; cultivar; genetic variability; seedling stage

Full Text:

PDF (Indonesian)

References


Aga, E., Bryngelsson, T., Bekele, E., & Salomon, R. (2003). Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis. Hereditas, 138, 36–46. http://doi.org/10.1034/j.1601-5223.2003.01636.x

Alemayehu, D. (2017). Review on Genetic Diversity of Coffee (Coffea Arabica L.) in Ethiopia. International Journal of Forestry and Horticulture, 3(2), 18–27. http://doi.org/10.20431/2454-9487.0302003

Anthony, F., Combes, M. C., Astorga, C., Bertrand, B., Graziosi, G., & Lashermes, P. (2002). The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theoretical and Applied Genetics, 104(5), 894–900. http://doi.org/10.1007/s00122-001-0798-8

Anthony, F., & Dussert, S. (n.d.). Descriptors for coffee (Coffea spp. and Psilanthus spp.). IPGRI.

Antunes, W. C., Pompelli, M. F., Carretero, D. M., & DaMatta, F. M. (2008). Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33–40. http://doi.org/10.1111/j.1744-7348.2008.00235.x

Bilova, T. E., Ryabova, D. N., & Anisimova, I. N. (2016). Molecular basis of the dwarfism character in cultivated plants. i. growth distortions due to mutations of gibberellin metabolism and signaling (review). Sel’skokhozyaistvennaya Biologiya, 51(1), 3–16. http://doi.org/10.15389/agrobiology.2016.1.3eng

Gimase, J. M., Thagana, W. M., Kirubi, D. T., Gichuru, E. K., & Gichimu, B. M. (2014). Genetic characterization of Arabusta coffee hybrids and their parental genotypes using molecular markers. Plant Cell Biotechnology and Molecular Biology, 15(1-2), 31–42.

Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant Soil, 321(1-2), 153–187. http://doi.org/DOI 10.1007/s11104-009-9929-9

Hulupi, R., Nugroho, D., & Yusianto. (2013). Keragaan beberapa varietas lokal kopi Arabika di Dataran Tinggi Gayo. Pelita Perkebunan, 29(2), 69–81.

Istianingrum, P., & Damanhuri. (2016). Keragaman dan heritabilitas sembilan genotip tomat (Lycopersicum esculentum Mill.) pada budidaya organik. Jur. Agroekotek., 8(2), 70–81. http://doi.org/10.7868/s0869565216210155

Karademİr, E., Karademir, Ç., Ekinci, R., & Gençer, O. (2008). Relationships between leaf chlorophyll content, yield and yield components of cotton (Gossypium hirsutum L .). In 10th Meeting of Inter-Regional Cooperative Research Network on CottonAt: 28 September-1 October, Greece.

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., … Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6(June), 1–10. http://doi.org/10.3389/fevo.2018.00064

Ling, Q., Huang, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107(2), 209–214. http://doi.org/10.1007/s11120-010-9606-0

Liu, C., Liu, Y., Lu, Y., Liao, Y., Nie, J., Yuan, X., & Chen, F. (2019). Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 2019(1), 1–15. http://doi.org/10.7717/peerj.6240

Mahé, L., Le Pierrès, D., Combes, M.-C., & Lashermes, P. (2007). Introgressive hybridization between the allotetraploid Coffea arabica and one of its diploid ancestors, Coffea canephora, in an exceptional sympatric zone in New Caledonia. Genome, 50(1996), 316–324. http://doi.org/10.1139/G07-011

Malau, S., & Pandiangan, S. (2018). Morphological variation in Arabica coffee (Coffea arabica L.) growing in North Sumatra Indonesia. J. Agron. Indonesia, 46(3), 314–321.

Moura, W. de M., Soares, Y. J. B., Júnior, A. T. do A., Lima, P. C. de, Martinez, H. E. P., & Gravina, G. de A. (2015). Genetic diversity in Arabica coffee grown in potassium-contrained environment. Ciênc. Agrotec., Lavras, 39(1), 23–31.

Prakash, N. S., Devasia, J., Jayarama, & Aggrawal, R. K. (2014). Coffee industry in India: Production to consumption - A sustainable enterprise. In V. R. Preedy (Ed.), Coffee in health and disease prevention (pp. 61–70). London, UK: Elsevier Inc.

Ramos, L. C. da S., & Carvalho, A. (1997). Shoot and root evaluations on seedlings from Coffea genotypes. Bragantia, 56(1), 59–68. http://doi.org/10.1590/S0006-87051997000100006

Reis, A. R., Favarin, J. L., Malavolta, E., Júnior, J. L., & Moraes, M. F. (2009). Photosynthesis, chlorophylls, and SPAD readings in coffee leaves in relation to nitrogen supply. Communications in Soil Science and Plant Analysis, 40(9-10), 1512–1528. http://doi.org/10.1080/00103620902820373

Rodrigues, W. N., Colodetti, T. V., Martins, L. D., Brinate, S. V. B., Tomaz, M. A., & do Amaral, J. F. T. (2015). Nutritional components of growth of Arabica coffee genotypes cultivated under different levels of phosphorus fertilization studied by path analysis. Australian Journal of Crop Science, 9(12), 1214–1220.

Romano. (2009). Kajian sitem agribisnis kopi organik di daerah Pegunungan Gayo. Jurnal Aplikasi Manajemen, 7(1), 21–33.

Aga, E., Bryngelsson, T., Bekele, E., & Salomon, R. (2003). Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis. Hereditas, 138, 36–46. http://doi.org/10.1034/j.1601-5223.2003.01636.x

Alemayehu, D. (2017). Review on Genetic Diversity of Coffee (Coffea Arabica L.) in Ethiopia. International Journal of Forestry and Horticulture, 3(2), 18–27. http://doi.org/10.20431/2454-9487.0302003

Anthony, F., Combes, M. C., Astorga, C., Bertrand, B., Graziosi, G., & Lashermes, P. (2002). The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theoretical and Applied Genetics, 104(5), 894–900. http://doi.org/10.1007/s00122-001-0798-8

Anthony, F., & Dussert, S. (n.d.). Descriptors for coffee (Coffea spp. and Psilanthus spp.). IPGRI.

Antunes, W. C., Pompelli, M. F., Carretero, D. M., & DaMatta, F. M. (2008). Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33–40. http://doi.org/10.1111/j.1744-7348.2008.00235.x

Bilova, T. E., Ryabova, D. N., & Anisimova, I. N. (2016). Molecular basis of the dwarfism character in cultivated plants. i. growth distortions due to mutations of gibberellin metabolism and signaling (review). Sel’skokhozyaistvennaya Biologiya, 51(1), 3–16. http://doi.org/10.15389/agrobiology.2016.1.3eng

Gimase, J. M., Thagana, W. M., Kirubi, D. T., Gichuru, E. K., & Gichimu, B. M. (2014). Genetic characterization of Arabusta coffee hybrids and their parental genotypes using molecular markers. Plant Cell Biotechnology and Molecular Biology, 15(1-2), 31–42.

Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant Soil, 321(1-2), 153–187. http://doi.org/DOI 10.1007/s11104-009-9929-9

Hulupi, R., Nugroho, D., & Yusianto. (2013). Keragaan beberapa varietas lokal kopi Arabika di Dataran Tinggi Gayo. Pelita Perkebunan, 29(2), 69–81.

Istianingrum, P., & Damanhuri. (2016). Keragaman dan heritabilitas sembilan genotip tomat (Lycopersicum esculentum Mill.) pada budidaya organik. Jur. Agroekotek., 8(2), 70–81. http://doi.org/10.7868/s0869565216210155

Karademİr, E., Karademir, Ç., Ekinci, R., & Gençer, O. (2008). Relationships between leaf chlorophyll content, yield and yield components of cotton (Gossypium hirsutum L .). In 10th Meeting of Inter-Regional Cooperative Research Network on CottonAt: 28 September-1 October, Greece.

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., … Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6(June), 1–10. http://doi.org/10.3389/fevo.2018.00064

Ling, Q., Huang, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107(2), 209–214. http://doi.org/10.1007/s11120-010-9606-0

Liu, C., Liu, Y., Lu, Y., Liao, Y., Nie, J., Yuan, X., & Chen, F. (2019). Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 2019(1), 1–15. http://doi.org/10.7717/peerj.6240

Mahé, L., Le Pierrès, D., Combes, M.-C., & Lashermes, P. (2007). Introgressive hybridization between the allotetraploid Coffea arabica and one of its diploid ancestors, Coffea canephora, in an exceptional sympatric zone in New Caledonia. Genome, 50(1996), 316–324. http://doi.org/10.1139/G07-011

Malau, S., & Pandiangan, S. (2018). Morphological variation in Arabica coffee (Coffea arabica L.) growing in North Sumatra Indonesia. J. Agron. Indonesia, 46(3), 314–321.

Moura, W. de M., Soares, Y. J. B., Júnior, A. T. do A., Lima, P. C. de, Martinez, H. E. P., & Gravina, G. de A. (2015). Genetic diversity in Arabica coffee grown in potassium-contrained environment. Ciênc. Agrotec., Lavras, 39(1), 23–31.

Prakash, N. S., Devasia, J., Jayarama, & Aggrawal, R. K. (2014). Coffee industry in India: Production to consumption - A sustainable enterprise. In V. R. Preedy (Ed.), Coffee in health and disease prevention (pp. 61–70). London, UK: Elsevier Inc.

Ramos, L. C. da S., & Carvalho, A. (1997). Shoot and root evaluations on seedlings from Coffea genotypes. Bragantia, 56(1), 59–68. http://doi.org/10.1590/S0006-87051997000100006

Reis, A. R., Favarin, J. L., Malavolta, E., Júnior, J. L., & Moraes, M. F. (2009). Photosynthesis, chlorophylls, and SPAD readings in coffee leaves in relation to nitrogen supply. Communications in Soil Science and Plant Analysis, 40(9-10), 1512–1528. http://doi.org/10.1080/00103620902820373

Rodrigues, W. N., Colodetti, T. V., Martins, L. D., Brinate, S. V. B., Tomaz, M. A., & do Amaral, J. F. T. (2015). Nutritional components of growth of Arabica coffee genotypes cultivated under different levels of phosphorus fertilization studied by path analysis. Australian Journal of Crop Science, 9(12), 1214–1220.

Romano. (2009). Kajian sitem agribisnis kopi organik di daerah Pegunungan Gayo. Jurnal Aplikasi Manajemen, 7(1), 21–33.

Sakai, E., Barbosa, E. A. A., Silveira, J. M. de C., & Pires, R. C. de M. (2013). Coffea arabica (cv Catuaí) production and bean size under different population arrangements and soil water availability. Engenharia Agrícola, 33(1), 145–156. http://doi.org/10.1590/s0100-69162013000100015

Smita, S., & Kishori, R. L. (2018). Estimation of genetic variability, heritability and genetic advance for essential oil yield and related traits in genus Ocimum. Advances in Crop Science and Technology, 06(02), 1–6. http://doi.org/10.4172/2329-8863.1000350

Sobreira, F. M., Oliveira, A. C. B. De, Pereira, A. A., & Sussumu, N. (2015). Potential of Híbrido de Timor germplasm and its derived progenies for coffee quality improvement. Autralian Journal of Crop Science, 9(4), 289–295.

Tefera, F., Alamerew, S., & Wagery, D. (2016). Assessment of the growth and yield characters of some promising Arabica coffee hybrids under highland environments in Southwestern Ethiopia. American-Eurasian J. Agric. & Environ. Sci., 16(5), 917–923. http://doi.org/10.5829/idosi.aejaes.2016.16.5.12889

Teressa, A., Crouzillat, D., Petiard, V., & Brouhan, P. (2010). Genetic diversity of Arabica coffee (Coffea arabica L.) collections. EJAST, 1(1), 63–79.

Thomas, S. G., & Hedden, P. (2006). Gibberellin metabolism and signal transduction. In P. Hedden & S. G. Thomas (Eds.), Plant Hormone Signaling (Vol. 24, pp. 147–184). Blackwell Publishing Ltd. http://doi.org/10.1002/9780470988800.ch6

Tran, T. M. H. (2005). Genetic variation in cultivated coffee ( Coffea arabica L .) accessions in northern New South Wales, Australia. Southern Cross University, Lismore, NSW.




DOI: http://dx.doi.org/10.21082/jtidp.v6n3.2019.p119-126

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats