Strategi Pengelolaan Serangga Hama dan Penyakit Tebu dalam Menghadapi Perubahan Iklim

Nurindah Nurindah, Titiek Yulianti


Fenomena perubahan iklim terjadi karena aktivitas manusia dalam mengelola lingkungan, diantaranya adalah deforestasi, emisi gas dari kegiatan industri, dan pembakaran biomassa. Komponen iklim yang berubah, yaitu peningkatan suhu udara, konsentrasi CO2 dalam atmosfer, dan hujan berpengaruh terhadap tanaman tebu, serangga serta mikro organisme yang berasosiasi dengan tanaman tebu. Perubahan iklim lebih banyak menyebabkan pengaruh negatif terhadap tanaman tebu dan interaksi trofik antara tanaman tebu, serangga herbivora dan mikro organisme penyebab penyakit tanaman dan musuh alami herbivora maupun antagonis mikro organisme. Peningkatan suhu udara menyebabkan perubahan fisiologis pada tanaman tebu yang berakibat meningkatnya infestasi serangga herbivora dan infeksi patogen penyebab penyakit tanaman. Peningkatan komposisi CO2 dalam atmosfer menurunkan sistem ketahanan tanaman terhadap herbivora, sehingga dapat memicu terjadinya out break; dan berpengaruh positif, negatif, maupun tidak berpengaruh terhadap perkembangan penyakit tanaman. Perubahan iklim mengharuskan sistem pengelolaan serangga hama dan penyakit tanaman tebu untuk menerapkan aksi mitigasi maupun adaptasi perubahan iklim untuk memperoleh produksi tebu yang optimal dan sistem budidaya tebu yang berkelanjutan. Dalam tinjauan ini dibahas pengaruh perubahan iklim terhadap perkembangan serangga hama dan patogen penyebab penyakit pada tanaman tebu, serta strategi pengelolaannya.

Management Strategy for Sugarcane Pests to Anticipate the Climate Change

Climate change phenomenon occurs due to human activities in managing the environment, such as deforestation, gas emissions from industrial activities, and biomass burning. The changing of climate components, ie, rising air temperatures, CO2 concentration in atmosphere, and precipitation have an effect on sugarcane, as well as on insects and micro-organisms associated with sugarcane. Climate change causes negative effects on sugar cane and trophic interactions between sugarcane crops, herbivorous insects and plant-causing micro-organisms and natural enemies of herbivores as well as micro-organism antagonists. Increased temperatures lead to physiological changes in sugarcane resulting in increased insect infestation of herbivores and pathogenic infections o the plant. Increased CO2 composition in atmosphere decreases the plant resistance system to herbivores, thus triggering an outbreak; and may have a positive, negative, or no effect on the development of the diseases. Climate change requires pest and sugarcane pest control systems to implement climate change mitigation and adaptation actions to obtain optimal cane production and sustainable sugarcane cultivation systems. In this review, we discussed the effects of climate change on the development of insect pests and pathogen causes of disease in sugarcane crops, and the strategy to manage them.


penggerek tebu; luka api; tebu; perubahan iklim;climate change; sugarcane borer; sugarcane smut

Full Text:



Bade, B., Ghorpade, S., 2009. Life fecundity tables of sugarcane woolly aphid, Ceratovacuna lanigera Zehntner. J. Insect Sci. 22, 402–405.

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B.,

Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 8, 1–16.


Ball, A., 1997. Microbial decomposition at elevated CO2 levels: effect of litter quality. Glob. Chang. Biol. 3, 379–386.

Belskaya, E.A., Vorobeichik, E.L., 2013. Responses of leaf-ating insects feeding on aspen to emissions from the Middle Ural copper smelter. Russ. J. Ecol. 44, 108–117.

Bhuiyan, S.A., Croft, B.J., James, R.S., Cox, M.C., 2012. Laboratory and field evaluation of fungicides for the management of sugarcane smut caused by Sporisorium scitamineum in seedcane. Australas. Plant Pathol. 41, 591–

Bonnett, G.D., 2014. Developmental Stages (Phenology), in: Moor, P.H., Botha, F.C. (Eds.), Sugarcane Physiology, Biochemistry & Functional Biology. John Wiley & Sons, Inc.,

Iowa, USA. Boonpradub, pp. 35–53.

Boullis, A., Francis, F., Verheggen, F., 2015. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas

Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies? Environ. Entomol. 44, 277–286.

Burdon, J., 1987. Diseases and Population Biology, 1st ed. Cambridge Univ. Press, New York.

Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to accelerating

atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. U. S. A. 104, 18866–70.

Chakraborty, S., Datta, S., 2003. How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol. 159, doi:10.1046/j.1469-


Chakraborty, S., Newton, A.C., 2011. Climatechange, plant diseases and food security: an overview. Plant Pathol. 60, 2–14.

Chakrabortya, S.., Tiedemann, V., Teng, S., 2000. Environmental Pollution Keynote review Climate change: potential impact on plant diseases. Environ. Pollut. 108, 317–326.

Chandiposha, M., 2013. Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. African J. Agric. Res. 8, 2814–2818.

Coakley, S.M., Scherm, H., Chakraborty, S., 1999. Climate Change and Plant Disease Management. Annu. Rev. Phytopathol. 37, 399–426.

Damayanti, T.A., Putra, L.K., 2011. First occurrence of sugarcane streak mosaic virus infecting sugarcane in Indonesia. J. Gen. Plant Pathol. 77, 72–74.


Damayanti, T.A., Putra, L.K., Giyanto, 2010. Hot Water Treatment of Cutting-Cane Infected With Sugarcane Streak Mosaic Virus ( Scsmv ). J. Int. Soc. Southeast Asian Agric. Sci. 16,17–25.

Dhaliwal, G., Jindal, V., Dhawan, A., 2010. Insect pest problems and crop losses: Changing trends. Indian J. Ecol. 37, 1–7.

Dhillon, M., Sharma, H., 2009. Temperature influences the performance and effectiveness of field and laboratory strains of the ichneumonid parasitoid, Campoletis chlorideae. Biocontrol 54, 743–750.

Evans, N., Baierl, A., Semenov, M.A., Gladders, P., Fitt, B.D.., 2008. Range and severity of a plant disease increased by global warming. J. R. Soc. Interface 5, 525–531.

Fageria, N.K., Baligar, V.C., Jones, C.A., 2010. Growth and Mineral Nutrition of Field Crops, 3rd ed. CRC Press.

Francl, L.J., 2001. The Disease Triangle: A plant pathological paradigm revisited. Plant Heal. Instr.

Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., Travers, S.E., 2006. Climate Change Effects on Plant Disease: Genomes to

Ecosystems. Annu. Rev. Phytopathol. 44, 489–509.

Ghini, R., Hamada, E., Bettiol, W., 2008. Climate change and plant diseases. Sci. Agric. 65, 98–107. Https:// 90162008000700015

Gillaspie, A., Teakle, D., 1989. Ratoon stunting disease, in: Ricaud, C., Egan, B.. T., Gillaspie, A.G., Hughes, C.. G. (Eds.), Diseases of Sugarcane Major Diseases. Elsevier, Amsterdam, pp. 59–80.

Gouvêa, J., Sentelhas, P., Gazzola, S., Santos, M., 2009. Climate changes and technological advances: impacts on sugarcane productivity in tropical southern Brazil. Sci. Agric. 66,


Hannah, L., Lovejoy, T.E., Schneider, S.H., 2005. Biodiversity and climate change in context, in: Lovejoy, T.E., Hannah, L. (Eds.), Climate Change and Biodiversity. New Haven, Yale,

pp. 3–14.

Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., Sakulyanontvittaya, T., 2007.

Sesquiterpene Emissions from Pine Trees − Identifications, Emission Rates and Flux Estimates for the Contiguous United States. Enviromental Sci. Technol. 41, 1545–1553.

Hibberd, J.M., Whitbread, R., Farrar, J.F., 1996. Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48, 37–53.

Huang, F., Leonard, R., Moore, S., Yue, B., Parker, R., Reagan, T., Stout, M., Cook, D., Akbar, W., Chilcutt, C., White, W., Lee, D., Biles, S., 2008. Geographical susceptibility of Louisiana

and Texas populations of the sugarcane borer , Diatraea saccharalis ( F .) (Lepidoptera : Crambidae ) to Bacillus

thuringiensis Cry1Ab protein. Crop Prot. 27, 799–806.

IPCC, 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri RK., Meyer LA (Eds). Geneva, Switzerland.

Joshi, S., Viraktamath, C.A., 2003. The sugarcane woolly aphid, Ceratovacuna lalligera Zehntner (Hemiptera: Aphididae): its biology, pest status and control. Curr. Sci. 87, 307–316.

Koike, H., Gillaspie, A.G.J., 1989. Mosaic, in: Ricaud, C., Egan, B.T., Gillaspie, J.A.G., Hughes, C.. (Eds.), Diseases of Sugarcane:

Major Diseases. Elsevier Science, Amsterdam, pp. 301–322.

Las, I., Pramudia, A., Runtunuwu, E., Setyanto, P., 2011. Antisipasi Perubahan Iklim Dalam Mengamankan Produksi Beras Nasional. Pengemb. Inov. Pertan. 4, 76–86.

Linnenluecke, M.K., Nucifora, N., Thompson, N., 2018. Implications of climate change for the sugarcane industry. Wiley Interdiscip. Rev. Clim. Chang. 9, 1–34.

Magarey, R., Royal, A., Williams, D., Bull, J., 2011. A brief history of disease epidemics in Queensland and o f some economic outcomes [WWW Document].

Matsuoka, M., Furbank, R.T., Fukayama, H., Miyao, M., 2001. Molecular Engineering Of C4 Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 297–314.

McDonald, B.A., Linde, C., 2002. Pathogen Population Genetics, Evolutionary Potential, And Durable Resistance. Annu. Rev.

Phytopathol. 40, 349–379.

Melloy, P., Hollaway, G., Luck, J., Norton, R., Aittken, E., Chakraborty, S., 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Glob. Chang. Biol. 16, 3363–3373.

Nibouche, S., Tibère, R., Costet, L., 2012. The use of Erianthus arundinaceus as a trap crop for the stem borer Chilo sacchariphagus reduces yield losses in sugarcane : Preliminary results. Crop Prot. 42, 10–15.

Niziolek, O., Berenbaum, M., DeLucia, E., 2012. Impact of elevated CO2 and temperature on Japanese beetle herbivory. Insect Sci. 20, 513–23.

Nurindah, N., Sunarto, D.A., Sujak, S., 2016. Evaluasi pelepasan Trichogramma spp. untuk pengendalian penggerek pucuk dan batang tebu. J. Entomol. Indones. 13, 107–116.

Pare, P.W., Tumlinson, J.H., 1999. Update on plant-insect interactions plant volatiles as a defense against insect herbivores. Plant Physiol. 121, 325–331. 10.


Park, S., Creighton, C., Howden, M., Matthieson, L., 2008. Climate change and the Australian Sugarcane Industry : Impacts, adaptation and R&D opportunities. Sugar Research Australia Ltd, Brisbane.

Pathma, J., Sakthivel, N., 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 1–19.

Prasad, Y.G., Bambawale, O.M., 2010. Effects of Climate Change on Natural Control of Insect Pests. Res. Dev 25, 1–12.

Rizwan Rasheed, Wahid, A., Farooq, M., Hussain, I., Basra, S.M.A., 2011. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul. 65, 35–45.

Rott, P.C., Girard, J.-C., Comstock, J.C., 2013. Impact of pathogen genetics on breeding for resistance to sugarcane diseases. Int. Soc. Sugar Cane Technol. 28, 1–11.

Runion, G.B.., Curl, E.A.., Rogers, H.H.., Backman, P.A.., Rodriguez-Kabana, R., Helms, B.., 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and

phyllosphere of cotton. Agric. For. Meteorol. 70, 117–130.

Salaudeen, M., Adama, C., Abdullahi, A., Ayeleke, D., Ibrahim, A., 2016. Climate change and viral diseases in relation to crop productivity and food security: A REVIEW. Int. J. Appl. Biol. Res. 7, 56–65.

Santoso, A.B., 2016. Pengaruh Perubahan Iklim terhadap Produksi Tanaman Pangan di Provinsi Maluku. Penelit. Pertan. Tanam. Pangan 35, 29–38.

Sharma, B.L., Singh, S.P., Sharma, M.L., 2012. Bio-degradation of Crop Residues by Trichoderma Species vis-à vis Nutrient

Quality of the Prepared Compost. Sugar Tech 14, 174–180.

Sharma, H.C., 2016. Climate change vis-a-vis pest management:Conference on National Priorities in Plant Health Management February 4-5,2016, Tirupati. Int. Crop. Res. Inst. Semi-Arid Trop. (ICRISAT), Patancheru

, Telengana, India 17–25.

Sharma, H.C., 2014. Climate Change Effects on Insects: Implications for Crop Protection and Food Security. J. J. Crop Improv. 28, 229–2259.

Srikanth, J., Mukunthan, N., Singaravelu, B., Kurup, N.K., Santhalakshmi, G., 2009. Rearing dipha aphidivora, the pyralid

predator of sugarcane woolly aphid Ceratovacuna lanigera, on its frozen host may be unfeasible. Sugar Tech 11, 80–82.

Srivastava, A.K., 2012. Sugarcane production: Impact of climate change and its mitigation. Biodiversitas, J. Biol. Divers. 13, 214–227.

Stavrinides, M.C., Lara, J.R., Mills, N.J., 2010. Comparative influence of temperature on development and biological control of two common vineyard pests (Acari:

Tetranychidae). Biol. Control 55, 126–131. 006

Stefan Rahmstorf, Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., Somerville, R.C.J., 2007. Recent Climate Observations Compared to Projections. Science (80-. ). 316, 709.

Strange, R.N., Scott, P.R., 2005. Plant Disease: A Threat to Global Food Security. Annu. Rev. Phytopathol. 43, 83–116. 3004.133839

Sukumar Chakraborty, S., 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3.

Takabayashi, J., Dicke, M., Posthumus, M.A., 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20, 1329–1354.

Tay, W., Soria, M., Walsh, T., Thomazoni, D., Silvie, P., 2013. A brave new world for an old world pest: Helicoverpa armigera

(Lepidoptera: Noctuidae) in Brazil. PLoS ONE 8 8. 24.

Thomson, L.J., Macfadyen, S., Hoffmann, A. a., 2010. Predicting the effects of climate changeon natural enemies of agricultural pests. Biol. Control 52, 296–306. 022

Torriani, D., Calanca, P., Lips, M., Ammann, H.B., Jürg, M., 2007. Regional assessment of climate change impacts on maize productivity and associated production risk in Switzerland.

Reg. Environ. Chang. 7, 209–221.

Tripathi, A., Tripathi, D.K., Chauhan, D.K., Kumar, N., Singh, G.S., 2016. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge

and future prospects. Agric. Ecosyst. Environ. 216, 356–373.

Vara Prasad, P. V., Vu, J.C. V., Boote, K.J.., Allen, L.H.J., 2009. Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct. Plant Biol. 36, 761–769. 043

Veromann, E., Toome, M., Kännaste, A., Kaasik, R., Copolovici, L., Flink, J., Kovács, G., Narits, L., Luik, A., Niinemets, Ü., 2013. Effects of nitrogen fertilization on insect pests, their

parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot. 43, 79–88.

Vu, J., Allen, L.J., Gallo-Meagher, M., 2002. Crop plant responses to rising CO2 and climate change, in: Pessarakli, M. (Ed.), ‘Handbook of Plant and Crop Physiology. Marcel Dekker,

New York, pp. 35–55.

Wand, S.J., Midgley, G.F., Jones, M.H., Curtis, P.S., 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions. Glob. Chang. Biol. 5, 723–741.


War, A.R., Taggar, G.K., War, M.Y., Hussain, B., 2016. Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. Int. J. Clin.

Biol. Sci. 1, 16–29.

Wismer, C., Bailey, R., 1989. Pineapple disease, in: Ricaud, C., Egan, B.T., Gillaspie, A.G., Hughes, C.G. (Eds.), Diseases of Sugarcane - Major Diseases. Elsevier, Amsterdam, p. 145–


Yuan, J.S., Himanen, S.J., Holopainen, J.K., Chen, F., Stewart, C.N., 2009. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends

Ecol. Evol. 24, 323–331. Https://

Ziska, L.H., Sicher, R.C., Bunce, J.A., 1999. The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiol. Plant.

, 74–80.


Zvereva, E., Kozlov, M., 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob. Chang. Biol. 12, 27–41.



  • There are currently no refbacks.

Copyright (c) 2018 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121

View My Stats