Cover Image

PERBAIKAN BIOPROSES UNTUK PENINGKATAN PRODUKSI BIOETANOL DARI MOLASE TEBU / Bioprocess Improvement for Enhanching Bioethanol Production of Sugarcane Molase

Suminar Diyah Nugraheni, Mastur Mastur

Abstract


ABSTRAK 

Bioetanol merupakan salah satu bahan bakar alternatif yang strategis untuk dikembangkan. Salah satu substrat yang menjanjikan untuk digunakan adalah molase.  Molase merupakan hasil samping industri gula kristal tebu yang masih  mengandung gula yaitu sekitar 45-54,6%.  Bioetanol dari molase tebu  berpotensi untuk dikembangkan karena sangat menguntungkan, pasokan cukup besar, tersedianya teknologi proses, serta tidak bersaing dengan pangan. Tulisan ini mengulas hasil-hasil penelitian dan implikasinya tentang bahan baku, proses, lingkungan yang berpengaruh serta strategi untuk meningkatkan produktivitas bioetanol dari molase tebu melalui rekayasa proses fermentasi. Pada pembuatan etanol, fermentasi merupakan proses yang memegang peranan penting.  Pengaturan lingkungan fermentasi seperti suhu, pH, dan tekanan berpengaruh terhadap bioproses dalam fermentasi.  Begitu pula penambahan bahan suplemen seperti gula, garam, dan ion logam menurut jenis dan konsentrasi yang tepat juga dapat mengoptimalkan proses fermentasi.  Selain pengelolaan lingkungan dan penambahan bahan suplemen, strategi untuk peningkatan produktivitas bioetanol dari molase dapat dilakukan dengan: 1) penggunaan mikrobia selain Saccharomyces cerevisiae; 2) pretreatment; dan 3) metode fermentasi kontinyu. Penggunaan mikrobia selain Saccharomyces cerevisiae, seperti Zymomonas mobilis dapat meningkatkan produktivitas etanol hingga 55,8 g/L atau 27,9% dari total gula reduksi.  Perlakuan pretreatment dapat meningkatkan produktivitas mikrobia dalam mengkonversi gula menjadi etanol, sedangkan penggunaan metode fermentasi secara kontinyu dapat meningkatkan produktivitas sebesar + 4.75 g/L/jam.

  

ABSTRACT 

Bioethanol is one of strategic alternative fuel to develop.  One of substrate that promises to be used is molasses. Molasses is by-product of sugar industry which contain of sugar about 45-54,6%. Bioethanol from sugarcane molase is necessary to develope because it is very profitable, large supply, availability technology, and no-competion to  food.  This paper was aimed to reviews some research results and their implications on raw materials, processes, advanced environments and strategies to increas bioethanol productivity of molasses through the fermentation process engineering. In the manufacture of ethanol, fermentation is an important holding process.  In ethanol production, fermentation plays an important role.  Fermentation environments arragement such as temperature, pH, and pressure can effect on bioprocess of fermentation. Similarly, the addition of supplemental ingredients such as sugar, salt, and metal ions by appropriate type and concentration can also optimize the fermentation process. In addition to environmental arrangement and supplemental adding, strategies to improve bioethanol productivity of molasses can be accomplished by 1) the use of microbes other than Saccharomyces cerevisiae; 2) pretreatment; and 3) continuous fermentation method. The use of microbes other than Saccharomyces cerevisiae, such as Zymomonas mobilis can increase ethanol productivity up to 55.8 g / L or 27.9% of total sugar reduction.  Pretreatment can increase microbial productivity in converting sugar to ethanol, while continuous use of fermentation method can increase productivity by + 4.75 g / L / hr.

 


Keywords


Kata kunci : fermentasi, bioetanol, molase, bioproses / Key words : fermentation, ethanol, molasses, bioprocess.

Full Text:

PDF

References


AFDC. 2014. World Fuel Ethanol Production by Country or Region . http://www.afdc.energy.gov/data/search?q=world+ethanol+production.[8 Juni 2015].

Anonimous. 2013. Distilasi. http://id.wikipedia.org/wiki/Distilasi. [1 Oktober 2013].

Atmojo, S. T. 2013. Pengertian Destilasi. http://chemistry35.blogspot.com/2011/08/pengertian-destilasi.html [1 Oktober 2013].

Bouallagui, H., Y. Touhami, N. Hanafi, A. Ghariani, and M. Hamdi. 2013. Performances comparison between three technologies for continuous ethanol production from molasses. Biomass and Bioenergy 48: 25-32.

Brethauer, S. and C.E. Wyman. 2010. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology 101 (2010). p. 4862–4874.

Chandel, A.K., E.S. Chan, R. Rudravaram, M.L. Narasu, L.V. Rao and P. Ravindra. 2007. Economics and enviromental impact of bioethanol production technologies; an appraisal. Biotechnology and Molecular Biology Review 2 (1): 14-32.

Cardona, C.A. and O.J. Sanchez. 2007. Fuel ethanol production : process design trends and integration opportunities. Bioresource Technology 98: 2415-2457.

Cheng, N.G, M. Hasan, A.C. Kumoro, C. F. Ling and M. Tham. 2009. Production of ethanol by fed-batch fermentation. Pertanika J. Sci. & Technol. 17 (2): 399 – 408.

Cazetta, M.L., M.A.P.C. Celligoi, J.B. Buzato, and I.S. Scarmino. 2007. Fermentation of Molasses by Zymomonas mobilis: Effects of Temperature and Sugar Consentration on Ethanol Production. Bioresource Technology 98: 2824–2828.

Darmawan, R. dan T. Widjaja. 2008. Peningkatan produktivitas etanol dari molasses dengan teknik immobilisasi di bioreaktor packed-bed.Seminar Nasional Fundamental dan Aplikasi Teknik Kimia 2008. Surabaya. http://www.its.ac.id/personal/.... [9 Juli 2013].

Deshpande, G.B. 2002. Overview of continuous alcohol fermentation and multipressure distillation technology. Proc S Afr Sug Technol Ass 76: 574 - 581.

Echegaray, O.F., J.C.M. Carvalho, A.N.R. Fernandes, S. Sato, E. Aquarone, and M. Vitolo. 2000. Fed-batch culture of sacchoromyces cerevisiae in sugar-cane blackstrap molasses: invertase activity of intact cells in ethanol fermentation. Biomass and Bioenergy 19: 39 - 50.

Elena, Patrascu. G. Rapeanu , C. Bonciu, dan T. Hopulele. 2009. Bioethanol production from molasses by different strains of saccharomyces cerevisiae. Fascicle VI – Food Technology, New Series Year III (XXXIII): 49-56.

Endah, R.D., D. Sperisa, N. Adrian, dan Paryanto. 2007. Pengaruh kondisi fermentasi terhadap yield etanol pada pembuatan bioetanol dari pati garut. Gema Teknik No: 2/Tahun X Juli 2007. http://cpanel.petra.ac.id/ejournal/index.php/gem/article/view/17610/17525. [12 September 2013].

Fadel, M., A.A. Keera, F. E. Mouafi, and T. Kahil. 2013. High level ethanol from sugar cane molasses bya new thermotolerant saccharomyces cerevisiae strain in industrial scale. Biotechnology Research International 2013: 1 - 6.

Fakruddin, M., M.A. Quayum, M.M. Ahmed, dan N. Chowdhury. 2012. Analysis of Key Factors Affecting Ethanol Production by Saccharomyces cerevisiae IFST-072011.Biotechnology 11 (4): 248 - 252.

Fakruddin, M., M.A. Islam, M.M. Ahmed, dan N. Chowdhury. 2013. Process Optimization of Bioethanol Production by Stress Tolerant Yeasts Isolated from Agro-industrial Waste. International Journal of Renewable and Suistainable Energy 2 (4): 133 - 139.

Fernandes, D.L.A., S.R. Pereira, L.S. Serafim, D.V. Evtuguin, dan A.M.R.B. Xavier. 2013. Second Generation Bioetanol from Lignocellulosics: Processing ofHardwood Sulphite Spent Liquor. Department of Chemistry, University of Aveiro.Portugal.

Fernández-López, C. L., B. Torrestiana-Sánchez, M. A. Salgado-Cervantes, P. G. Mendoza García, and M. G. Aguilar-Uscanga. 2012. Use of Sugarcane Molasses “B” As An Alternative For Ethanol Production With Wild-Type Yeast Saccharomyces cerevisiae ITV-01 at High Sugar Concentrations. Bioprocess Biosyst Eng 35: 605 - 614. doi:10.1007/s00449-011-0633-9.

Galanakis, C.M., C. Kordulis, M. Kanellaki, A.A. Koutinas, A. Bekatorou, and A. Lycourghiotis. 2012. Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on c-alumina pellets. Bioresource Technology 114: 492 – 498.

Goldemberg, J. 2008. The Potential For 1st Generation Ethanol Production From Sugarcane. University of Sao Paulo. Brazil. http://www.globalbioenergy.org/uploads/media/0907_Goldemberg:_THE_POTENTIAL_FOR-1ST_GENERATION_ETHANOL. [ 24 Juli 2013].

Godoy, A., H.V. Amorim, M.L. Lopes, and A.J. Oliveira. 2008. Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int. Sugar J. 110 (1311): 175 – 182.

Gomez, A. M. Rodrigues, C.Montan’es, C. Dopazo, dan N. Fueyo. 2011. The technical potential of first-generation biofuels obtainedfrom energy crops in Spain Fluid Mechanics Group, University of Zaragoza, Marı´a de Luna 3, 50018 Zaragoza, Spain Biomass and bioenergy 35: 2143 - 2155.

Guzzone, A.. 2013. Energy efficient technologies for ethanol productionfrom sugar and sugar by-products. VOGELBUSCH. Vienna, Austria.

Heinzle, E.. 2009. Introduction to Ideal Reactors “Basic Description and Design” Technische Chemie I, WS2009: Chemical R

Highina, B.K., I. Hashima and I.M. Bugaje. 2011. Optimization Of Ethanol Production From Sugar Molasses in Nigeria. Journal of Applied Technology in Enviromental Sanitation 1 (3): 233-237.

Jutakanoke, R., N. Leepipatpiboon, V. Tolieng, V. Kitpreechavanich, T. Srinorakutara, A. Akaracharanya. 2012. Sugarcane leaves: Pretreatment and ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy 39: 283-289.

Keshwani, D.R. dan J.J.Cheng. 2009. Switchgrass for bioetanol and other value-added applications: A review. Bioresource Technology 100: 1515 - 1523.

Kim, S. and B.E. Dale. 2004. Global potential bioetanol production from wasted cropsand crop residues. Biomass and Bioenergy 26: 361 – 375.

Klomklieng, W. and A. Prateepasen. 2012. Molasses Fermentation to Ethanol by SaccharomycescerevisiaeM30 Using Low Ultrasonic Frequency Stimulation. KKU Res. J 17(6): 950 - 957.

Lin, Y., W. Zhang, C. Li, K. Sakakibara, S. Tanaka, dan H. Kong. 2012. Factors Affecting Ethanol Fermentation using Saccharomyces cerevisiae BY4742. Biomass dan Bioenergy xxx :1-7.

Mariam, I., K. Manzoor, S. Ali and Ikram-Ul-Haq. 2009. Enhanced Production of Ethanol from Free and Immobilized Saccharomyces cerevisiae Stationary Culture. Pakistan. Journal of Botany 41: 821-823.

Martinez, A.T., F.J. Ruiz-Duenas, M.J. Martinez, J.C. Del Rio, and A. Gutierrez. 2009. Enzymatic delignification of plant cell wall: from nature to mill.Current Opinion in Biotechnology 20 (3): 348 - 357, ISSN 1879-0429.

Millan, J.D. 1997. Bioetanol production: status dan prospects. Renewable Eng. 10: 295 – 302.

Naik, S.N., V.V. Goud, P.K. Rout, and A.K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14: 578 – 597, ISSN 1364-032.

Nofemele, Z., P. Shukia., A. Trussier., K. Permaul. and S. Singh. 2012. Improvement of Ethanol Production from Sugarcane Molasses Through Enhanced Nutrient Supplementation Using Saccharomyces cerevisiae. Journal of Brewing and Distilling 3 (2): 29 - 35.

Ngwenya, T.T., P. Shukla., N. Baboolai., K. Permaul and S. Singh. 2012. An Industrial Perspective of Factors Affecting Molasses Fermentation by Saccharomyces cerevisiae. Journal of Brewing and Distilling 3 (2): 23 - 28.

Osunkoya, O.A. and N.J. Okwudinka. 2011. Utilization of Sugar Refinery Waste (Molasses) for Ethanol Production using Saccharomyces Cervicae. American Journal of Scientific and Industrial Research 2(4): 694 - 706.

Patrascu, E., G. Rapeanu., and T. Hopulele. 2009. Current Approaches To Efficient Biotechnological Production Of Ethanol. Innovative Romanian Food Biotechnology 4: 1-11.

Patrascu, E., R. Gabriela, B. Camelia, and H. Traian. 2009. Bioethanol Production from Molasses by Different Strains of Saccharomyces Cerevisiae. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, New Series Year III (XXXIII). p. 49-56.

Perez, J., J. Munoz-Dorado, T. de la Rubia, and J. Martinez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.International Microbiology 5 (2): 53 - 63, ISSN 1139-6709.

Periyasamy, S., S. Venkatachalam., S. Ramasamy., V. Srinivasan. 2009. Production of Bio-ethanol from Sugar Molasses. Modern Applied Science. 3 (8) http://www.ccsenet.org/journal.html.

Prihandana, R. dan R. Hendroko. 2008. Energi Hijau. Penebar Swadaya. Depok.

Puspita, E., H. Silviana dan T. Ismail. 2010. Fermentasi Etanol Dari Molasses Dengan Zymomonas mobilis A3 Yang Diamobilisasi Pada k-Karaginan. Seminar Rekayasa Kimia Dan Proses 2010. ISSN : 1411-4216.

Renge, V.C., S.V. Khedkar and N.R. Nandurkar. 2012. Enzyme Synthesis By Fermentation Method : A Review. Scientific Reviews and Chemical Communication 2(4): 585 - 590.

Richter, H., M.E. Martin, and L.T. Angenent. 2013. A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies 2013 (6): 3987 - 4000.

Riyanti, E.I. 2009. Biomassa Sebagai Bahan Baku Bioetanol. Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian. Bogor.

Simmons, B.A., D. Loque, and H.W. Blanch. 2008. Next-generation biomass feedstocks for biofuel production.Genome Biology 9 (242), ISSN 1465-6914.

Sanchez, O.J. and C.A Cardona. 2008. Trend in Biotechnologycal Production of Fuel Ethanol from Different Feedstocks. Bioresource Technology 99: 5270-5295.

Sierra, R., Smith, A., Granda, C.B. & Holtzapple, M. 2008. Producing Fuels and Chemicals from Lignocellulosic Biomass.Chemical Engineering Progress 104(8): 10 - 18.

Stambuk, B.U., E.C.A. Eleutherio, L.M. Florez-Pardo, A. M. Souto-Maior, dan E.P.S. Bon. 2008. Brazilian Potential for Biomass Ethanol Challenge of Using Hexose and Pentose co-fermenteng Yeast Strain. Journal of Scientific and Industrial research 67: 918 - 926.

Supriyanto, T. dan Wahyudi. 2013. Proses Produksi Etanol Oleh Saccharomyces cerevisiae Dengan Operasi Kontinyu Pada Kondisi Vakum. Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro. http://eprints.undip.ac.id/13471/Artikel_Ilmiah.pdf. [9 Juli 2013].

Susantris, M. dan N. Gamayanti. 2013. Simulasi Proses Produksi Etanol Dari Molasses Melalui Beberapa Konfigurasi Alternatif Proses.http://digilib.its.ac.id/public/ITS-undergraduate-10658-Paper.pdf. [9 Juli 2013].

Szymanowska,D and W. Grajek. 2009. Fed-Batch Simultaneous Saccharification and Ethanol Fermentation of Native Corn Starch. Acta Scientarium Polonorum., Technol. Aliment. 8(4): 5 - 16.

Walker, G.M. 2010. Bioethanol: Science and Technology of Fuel Alcohol. Graeme M. Walker & Ventus Publishing ApS. 8-10 pp.

Walter, A. and A.V. Ensinas. 2010. Combined Production of Second-generation Biofuels And Electricity From Sugarcane Residues. Journal of Energy 35: 874 - 879.

Wardani, A.K Danf, dan N.E. Pertiwi. 2013. Produksi Etanol dari Tetes Tebu oleh Saccharomyces Cerevisiae Pembentuk Flok (Nrrl – Y 265). Agritech 33(2): 131 - 139.

Widjaya, T., M. Andina dan D. Agustin. K.W. 2009. Pengaruh Konsentrasi Gula Terhadap Produksi Etanol dari Molase dengan Teknik Immobilisasi Sel. Prosiding Seminar Nasional Teknik Kimia “Kejuangan”. Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia. Yogyakarta. B11: 1-6.

Yu, Z., and H. Zhang. 2003. Pretreatments of Cellulose Pyrolysate for Ethanol Production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass and Bioenergy 24: 257 - 262.

Xavier, M.R. 2007. The Brazilian Sugarcane Ethanol Experience. Issue Analysis. No. 3. Washington USA. Competitive Enterprise Institute. 11 pp.




DOI: http://dx.doi.org/10.21082/psp.v16n2.2017.69-79

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Perspektif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Pusat Penelitian dan Pengembangan Perkebunan
Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu
Bogor 16111

ISSN : 1412-8004

E-ISSN: 2540-8240

Perspektif Review Penelitian Tanaman Industri has been indexed by