TEKNIK PEMODELAN BERDASARKAN VISUALISASI WARNA UNTUK TRANSPARANSI GRADING DAN SORTASI TEMBAKAU VIRGINIA / Modelling Techniques Based on Colour Visualization for Transparency Grading and Sorting of Virginian Tobacco

Nunik Eka Diana, Joko Hartono

Abstract


ABSTRAK

Tembakau Virginia memerlukan beberapa tahapan proses sebelum memasuki proses tataniaga, diantaranya yang memegang peranan penting adalah grading (penilaian) dan sortasi. Kedua proses ini sangat menentukan tingkatan mutu dan harga jual daun tembakau yang dihasilkan oleh petani. Dengan proses grading dan sortasi yang tertata, maka penjual (dalam hal ini petani) dan pembeli dapat mengklasifikasikan tembakau sesuai dengan mutu yang dikehendaki. Proses sortasi lebih menekankan pada keseragaman berdasarkan pada posisi daun pada tanaman dan ketampakan secara visual termasuk warna, cacat, kerusakan, panjang daun serta tingkat kemasakan daun. Berdasarkan hasil sortasi diperoleh beberapa tingkatan mutu yang tergantung pada tipe dan jenis tembakau serta berdasar pada permintaan pasar. Sementara proses grading adalah tindakan pengklasifikasian mutu dari hasil sortasi yang didasarkan pada posisi daun atau letak daun pada batang dan unsur-unsur luar lainnya (external appreciation), sehingga dihasilkan mutu paling seragam. Secara konvensional, proses grading dilakukan secara kualitatif, namun saat ini sudah terdapat beberapa metode yang dapat mengklasifikasikan tingkatan mutu tembakau berdasarkan kuantifikasi dengan metode pemodelan. Metode ini mengacu pada penampakan visual, yaitu berdasarkan pada warna daun tembakau serta posisi daun pada batang. Namun, metode-metode ini masih banyak dilakukan di luar negeri yang sudah maju kegiatan pengembangan dan penelitiannya. Hasil penelitian tentang teknik pemodelan proses grading tembakau jika dibandingkan dengan secara manual memiliki nilai keakuratan berkisar antara 64-87,18%, bahkan sudah dicoba ulang dengan tingkat akurasi 81-93% dengan teknik pemodelan CNN yang perlu disempurnakan, namun teknik pemodelan masih didahului dengan proses sortasi daun tembakau berdasarkan kelas mutunya. Diharapkan penulisan naskah ini dapat memberikan pemahaman yang bermanfaat dalam pengelolaan tembakau terutama proses sortasi dan grading sehingga diperoleh kelas mutu sesuai dengan harapan.

 

ABSTRACT

As a commodity with a high economic value, tobacco requires several stages before entering the process of trading. Among the processes that important role is the process of grading and sorting. These two processes will greatly determine the level of quality and at the same time determine the selling price of tobacco leaves produced by farmers. With the process of grading and sorting arranged then the seller (the farmer) and the buyer can classify tobacco in accordance with the desired quality. Sorting process is more emphasis on uniformity based on leaf position on plants and visually visible including color, defect, damage, leaf length and maturity level of leaves. Based on the sorting results obtained several levels of quality depending on the type and kind of tobacco and based on market demand. While the grading process on tobacco is the action of classifying the quality of the sorting results based on the leaves position on the stem and other external elements that are considered important and affect the quality, resulting quality until the most uniform conditions. In this way the process of marketing tobacco can be more transparent because the quality becomes more orderly. Grading process is always done qualitatively, but now there are several methods that can classify the level of tobacco quality based on quantification by modeling method. This method refers to visual appearance based on the color of tobacco leaves and the position of leaves on the stem. However, these methods are still widely practiced abroad with advanced development and research activities. The results of research on tobacco grading process modeling techniques when compared to manually have an accuracy value ranging from 64-87.18%, it has even been retried with an accuracy rate of 81-93% with CNN modeling techniques that need to be refined but the modeling technique is still preceded by the tobacco leaf sorting process based on its quality. It is hoped that the writing of this manuscript can provide a useful understanding in tobacco management, especially the sorting and grading process in order to obtain a quality class as expected.

 


Keywords


tembakau, mutu, sortasi, grading / tobacco, quality, sorting, grading

Full Text:

PDF (Indonesian)

References


Abbas, H., U. Shakoor, M. Khan, M. Ahmed, and K. Khursid. 2019. Automated sorting and grading of agricultural products based on image processing. 8th International Conference on Information and Communication Technologies (ICICT)

Badri, M. 1993. Analisa biaya produksi tanaman tembakau virginia MT 1993.

Banozic, M., S. Jokic, D. Ackar, M. Blazic, and D. Subaric. 2020. Carbohydrates—Key Players in Tobacco Aroma Formation and Quality Determination. Molecules 25(1734). doi: doi:10.3390/molecules25071734.

Campbell, J. 1995. Trends in tobacco leaf usability. Beitrage zur Tab. Int. 16: 185–195.

Chang, A., Y. Du, Q. FU, N. BQ, S. Wang, et al. 2009. Correlationship between main chemical components and sensory quality of flue-cured tobacco. Chin Tob Sci 30(6): 9–12.

Dasari, S., K. Chintada, and M. Patruni. 2018. Flue-cured tobacco leaves classification : A generalized approach using deep Convolutional Neural Networks (CNN). Cognitive Science and Artificial Intelligence, Springer Briefs in Forensic and Medical Bioinformatics. p. 13–21

Direktorat Jenderal Perkebunan. 2012. Pedoman teknis penanganan pascapanen tembakau. Direktorat Pascapanen dan Pembinaan Usaha.

Du, W., X. Tan, J. Yi, and Q. SU. 2007. Evaluation of leaf tobacco quality using chemical composition data. Acta Tab Sin 13(3): 25–31.

FAO. 2018. Trade and nutrition technical note. Trade policy technical notes 21. Trade and food security.

Feng, J., S. Zheng, and G. Maciel. 2004. Investigations of Charring and Char/Air Interaction of Cellulose, Pectin, and Tobacco. Energ. Fuel. 18: 560–568.

Guru, D., P. Mallikarjuna, S. Manjunath, and S. MM. 2011. Min-max Representation of Features for Grading Cured Tobacco Leaves. Stat. Appl. 9(1 & 2): 15–29.

Guyer, D., R. Brook, and E. Timm. 1994. Lighting systems for fruit sorting. Tree Fruit Postharvest J. 5(1): 22–28.

Hou-long, J., X. Chen, W. Dai-bin, G. Li-na, Z. Ming, et al. 2016. Effect of tobacco leaf width/length ratio on tobacco quality : a case study in the Chongqing tobacco production area. Aust. J. Crop Sci. 10(10): 1455–1459.

Jain, K., L. Patel, H. Shah, and C. Modi. 2012. Evaluation of Nicotiana Tabacum (FCV) quality using off-line machine vision. Procedia Eng. 38: 2808–2815.

Joko-Hartono. 2013a. Penyempurnaan proses sortasi daun untuk meningkatkan mutu tembakau rajang. Infotek Perkeb. 5(4).

Joko-Hartono. 2013b. Variasi dan perbaikan cara pengolahan berbagai tipe tembakau rajangan di berbagai wilayah penghasil tembakau. Perspektif 12(1): 37–46.

Kheawfu, K., A. Kaewpinta, W. Chanmahasathien, P. Rachtanapun, and P. Jantrawut. 2021. Extraction of Nicotine from Tobacco Leaves and Development of Fast Dissolving Nicotine Extract Film. Membranes (Basel). 11(403). doi: https:// doi.org/10.3390/membranes11060403.

Kusnianto, D. Manumono, and T. Suswatiningsih. 2018. Usaha tani tembakau (Nicotiana tabacum L) di desa Kentengsari kecamatan Candiroto kabupaten Temanggung. J. MASEPI 3(2).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE. p. 2278–2324

Londhe, D., S. Nalawade, G. Pawar, V. Atkari, and S. Wandkar. 2013. Grader : A review of different methods of grading for fruits and vegetables. Agric. Eng. Int CIGR J. 15(3): 217–230.

Mahendran, R., G. Jayashree, and K. Alagusundaram. 2012. Application of computer vision technique on sorting and grading of fruits and vegetables. J. Food Process. Technol. S1-001. doi: 10.4172/2157-7110.S1-001.

Manickavasagan, A., J. John, Gunasekaran, and P. Doraisamy. 2007. Trends in Indian Flue Cured Virginia Tobacco (Nicotiana tobaccum) Processing : I. Harvesting, Curing and Grading. Res. J. Agric. Biol. Sci. 3(6): 676–681.

Mendell, S., E. Bourlas, and M. DeBardeleben. 1984. Factors influencing tobacco leaf quality : an investigation of the literature. Beitrage zur Tab. Int. 12(3): 153–167.

Min, Y., Y. Luo, Y. Pan, W. Zi, X. Zhang, et al. 2013. Effect of harvest maturity on quality of Flue Cured Tobacco leaves in Jingdong country. J. South. Agric. 44(5): 735–739.

Mohsenzadeh, R., M. Taherkhani, M. Shamel-Rostani, M. Seraji, M. Alizadegan, et al. 2014. Design and construction of intelligent control system in processing steps of Flue-cured tobacco. Int. Res. J. Appl. Basic Sci. 8(9): 1187–1189.

Mushiri, T., N. Sithole, and C. Mbohwa. 2017. Intelligent grading and motion prediction dynamics of tobacco : case of Zimbabwe. Proceeding of the 2017 International Symposium on Industrial Engineering and Operations Management (IEOM). p. 123–131

Narendra, V., and K. Hareesh. 2010. Quality inspection and grading of agricultural and food products by computer vision – A Review. Int. J. Comput. Appl 2(1): 43–65.

Narvankar, D., and S. Jha. 2005. Development of rotating screen grader for selected ochard crops. J. Agric. Eng. 42(4).

Pusdatin. 2014. Outlook komoditi tembakau. Pusat Data dan Sistem Informasi Pertanian. Sekretariat Jenderal (D. Cakrabawa and L. Nuryati, editors). Sekretariat Jenderal-Kementerian Pertanian Republik Indonesia.

Setiawan, W., and A. Purnama. 2020. Tobacco Leaf Images Clustering using DarkNet19 and K-Means. Information Technology International Seminar Surabaya. p. 269–273

Shah, S., A. Ahmad, F. Mohammad, Hidayatur-Rahman, G. Woras, et al. 2008. Genotypic evaluation of some Virginia tobacco varieties for yield and quality traits. Sarhad J. Agric 24(4): 607–611.

SNI. 2006. Standar Nasional Indonesia, tembakau virginia flue cured. Dewan Standardisasi Nasional-DSN.

Sun, B., F. Zhang, G. Zhou, G. Chu, F. HUang, et al. 2013. Genetic variation in alkaloid accumulation in leaves of Nicotiana. J. Zhejiang Univ. Sci. B. 14(12): 1100–1109.

Tattersfield, G. 1999. Classification of Cured Tobacco Leaves by Colour and Plant Position by means of Computer Processing of Digital Images.

Terril. 1975. Production factors affecting chemical properties of the flue-curred tobacco leaf. V. Influence of harvesting variables. Production factors affecting chemical properties of the flue-curred tobacco leaf. p. 72–75

Tirtosastro, S., and W. Musholaeni. 2015. Penanganan panen dan pascapanen tembakau di kabupaten Bojonegoro. Buana Sains 15(2): 155–164.

Tso, T. 1972. Physiology and biochemistry of tobacco plants.

Voges, E. 1984. Tobacco Encyclopedia. Tobacco Journal International.

Zhang, J., S. Sokhansanj-aq, S. Wu, R. Fang, and W. Yang. 1997. A trainable grading system for tobacco leaves. Comput. Electron. Agric. 16: 231–244.

Zhang, F., and X. Zhang. 2011. Classification and quality evaluation of tobacco leaves based on image processing and fuzzy comprehensive evaluation. Sensors 11: 2369–2384.

Zhou, K., Q. Zhou, and X. Hu. 2008. Advance in aroma substances in flue-cured tobacco. Chin Tob Sci 29(2): 58–61.

Zou, C., and K. Xiong. 2019. Different yellowing degrees and the industrial utilization of flue-cured tobacco leaves. Sci. agric. (Piracicaba, Braz.) 76(1). doi: https://doi.org/10.1590/1678-992X-2017-0157.




DOI: http://dx.doi.org/10.21082/psp.v20n1.2021.50-62

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Perspektif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Pusat Penelitian dan Pengembangan Perkebunan
Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu
Bogor 16111

ISSN : 1412-8004

E-ISSN: 2540-8240

Perspektif Review Penelitian Tanaman Industri has been indexed by