PELUANG LIMBAH KELAPA SAWIT UNTUK PRODUKSI POLIHIDROKSIALKANOAT SEBAGAI BIOPLASTIK / The Opportunities of Oil Palm Waste for Production of Polyhydroxyalkanoate as Bioplastic

Hasrul Abdi Hasibuan

Abstract


ABSTRAK

 Plastik konvensional merupakan plastik berbasis minyak bumi (petrokimia), yang memiliki permasalahan meliputi ketersediaan bahan baku semakin sedikit dan sampah plastik ini menyebabkan polusi lingkungan karena sulit mengalami degradasi secara alami. Oleh karena itu, plastik yang dibuat dari bahan baku yang biodegradable dan berkelanjutan perlu untuk terus dikembangkan. Bioplastik adalah plastik yang dibuat dari bahan alami dan salah satu bahan bakunya adalah polihidroksialkanoat (PHA), yang memiliki sifat biodegradable, fleksibel dan termoplastik. Polihidroksialkanoat dihasilkan oleh bakteri sebagai cadangan karbon dan energi intraseluler menggunakan substrat seperti gula dan asam lemak. Bioplastik berbahan PHA telah dibuat menjadi barang dagangan sebagai bahan kemasan. Peningkatan sifat fisik dari PHA sebagai bahan kemasan dilakukan melalui pencampuran dengan bahan polimer yang biodegradable, plastisiser, dan antimokroba. Kelemahan produksi PHA adalah biaya produksinya tinggi namun dapat diminimalisasi dengan menggunakan bahan baku yang tepat. Limbah cair dan padat dari industri kelapa sawit merupakan bahan yang berpotensi untuk produksi PHA karena dengan pemanfaatannya dapat meminimalkan limbah, meningkatkan nilai tambah dan mendukung industri kelapa sawit yang berkelanjutan. Jenis-jenis PHA yang dihasilkan dari limbah cair dan padat dari industri kelapa sawit sangat tergantung dari substrat dan bakteri yang digunakan. Strategi yang dapat dilakukan untuk mempercepat hilirisasi bioplastik berbasis PHA dari industri kelapa sawit meliputi: (1) penggunaan teknologi pengolahan limbah cair dan padat dari pabrik kelapa sawit secara terintegrasi, (2) penggunaan bakteri yang tepat untuk mengakumulasi PHA dari limbah cair (seperti Rhodobacter sphaeroides, Delftia tsuruhatensis Bet002, Betaproteobacteria, Alphaproteobacteria, Gammaproteo-bacteria), dan limbah padat (seperti B. megaterium, Bacillus cereus suaeda B-001), dan (3) pemanfaatan PHA pada produk yang memiliki nilai tambah tinggi seperti produk biomedis dan farmasi.

 

 ABSTRACT

 Conventional plastic is petroleum-based plastic, which has problems including the availability of fewer raw materials, and this plastic waste causes environmental pollution because it is difficult to natural degradation. Therefore, plastics made from biodegradable and sustainable raw materials need to develop. Bioplastics are plastics made from natural materials and one of the raw materials is polyhydroxyalkanoate (PHA), which has biodegradable, flexible, and thermoplastic properties. Polyhydroxyalkanoate is produced by bacteria as carbon reserves and intracellular energy using substrates such as sugar and fatty acids. Bioplastics made from PHA have been commercialized as packaging materials. Improvement of the physical properties of PHA as a packaging material is conducted by mixing it with biodegradable polymerizers, plasticizers, and antimicrobials.  The disadvantage of PHA production is that its production costs are high but can be minimized by using appropriate raw materials. Liquid and solid waste from the oil palm industry are materials that have the potential for the production of PHA because its utilization can minimize waste, increase added value, and support the sustainable oil palm industry. The types of PHA that are produced from liquid and solid wastes from the palm oil industry are highly dependent on the substrate and bacteria used. Strategies that can be taken to accelerate the downstream of PHA-based bioplastics from the oil palm industry include: (1) the use of liquid and solid waste from the oil palm industry with integrated processing technology, (2) the use of appropriate bacteria to accumulate PHA from liquid waste (such as Rhodobacter sphaeroides, Delftia tsuruhatensis Bet002, Betaproteobacteria, Alphaproteobacteria, Gammapro-teobacteria), and solid waste (for example B. megaterium, Bacillus cereus suaeda B-001), and (3) utilization of PHA on products that have a high added value such as biomedical and pharmaceuticals products.

 


Keywords


bioplastik, kelapa sawit, limbah, minyak sawit, polihidroksialkanoat / bioplastic, oil palm, waste, palm oil, polyhydroxyalkanoate

Full Text:

PDF

References


Akinmulewo, A.B. and O.C. Nwinyi. 2019. Polyhydroxyalkanoate: a biodegradable polymer (a mini review). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1378/4/042007

Alias, Z. and I.K.P. Tan. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technology 96(11): 1229–1234. https://doi.org/10.1016/ j.biortech.2004.10.012

Altaee, N., A. Fahdil, E. Yousif, and K. Sudesh. 2016. Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil. Journal of Taibah University for Science 10(4): 543–550. https://doi.org/10.1016/j.jtusci.2015.09.003

Arikan, E.B. and H.D. Ozsoy. 2015. A review: investigation of bioplastics. Journal of Civil Engineering and Architecture 9: 188-192. https://doi.org/10.17265/1934-7359/2015.02.007

Bakar, S.N.H.A., H.A. Hasan, A.W. Mohammad, S.R.S. Abdullah, T.Y. Haan, R. Ngteni, and K.M.M. Yusof. 2017. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.10.100

Bugnicourt, E., P. Cinelli, A. Lazzeri, and V. Alvarez. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polymer Letters 8(11): 791–808. https://doi.org/10.3144/ expresspolymlett.2014.82

Butt, F.I., N. Muhammad, A. Hamid, M. Moniruzzaman, and F. Sharif. 2018. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications – Review. International Journal of Biological Macromolecules 120: 1294–1305. https://doi.org/10.1016/j.ijbiomac.2018.09.002

Cahyaningtyas, A.A., R. Ermawati, G. Supeni, F.A. Syamani, N. Masruchin, W.B. Kusumaningrum, D.A. Pramasari, T. Darmawan, Ismadi, E.S. Wibowo, D. Triwibowo, dan S.S. Kusumah. 2019. Modifikasi dan karakterisasi pati batang kelapa sawit secara hidrolisis sebagai bahan baku bioplastik. Jurnal Kimia dan Kemasan 41(1): 37-44. https://doi.org/ 10.24817/jkk.v41i1.4623

Castilho, L.R., D.A. Mitchell, and D.M.G. Freire. 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology 100(23): 5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088

Ciesielski, S., J. Możejko, and N. Pisutpaisal. 2015. Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production 106: 408–421. https://doi.org/10.1016/j.jclepro.2014.09.040

Coles, R., M. Kay, and J. Song. 2011. Bioplastics. In R. Coles and M. Kirwan (Eds.) Food and Beverage Packaging Technology. Blackwell Publishing Ltd.

Din, M.F.M., P. Mohanadoss, Z. Ujang, M.V. Loosdrecht, S.M. Yunus, S. Chelliapan, V. Zambare, and G. Olsson. 2012. Development of bio-PORec system for polyhydroxyalkanoates (pha) production and its storage in mixed cultures of palm oil mill effluent (POME). Bioresource Technology 124: 208-216. https://doi.org/ 10.1016/j.biortech.2012.08.036

Garcia-Nunez, J.A., N.E. Ramirez-Contreras, D.T. Rodriguez, E. Silva-Lora, C.S. Frear, C. Stockle, and M. Garcia-Perez. 2016. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling 110: 99–114. https://doi.org/ 10.1016/j.resconrec.2016.03.022

Garside, M. 2019. Global palstic production statistics. Diakses pada 9 Juni 2020, dari https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

Gumel, A.M., M.S.M. Annuar, and T. Heidelberg. 2012. Effects of carbon substrates on biodegradable polymer composition and stability produced by Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent. Polymer Degradation and Stability 97(8): 1224–1231. https://doi.org/10.1016/ j.polymdegradstab.2012.05.041

Hassan. M.A., Y. Shiral, N. Kusubayashi, M.I.A. Karim, K. Nakanishi, and K. Hashimoto. 1996. Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. Journal of Fermentation and Bioengineering 82(2): 151-156

Hassan, M.A, Y. Shirai, N. Kusubayashi, M.I.A. Karim, K. Nakanishi, and K. Hashimoto. 1997. The production of polyhydroxyalkanoates from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. Journal of fermentation and Bioengineering 83(5): 485-488

Imperial Chemical Industries. 1990. Bioproducts and Fine Chemicals, Biopolymers Group, Bilingham, England. BIOPOL nature’s plastic fully biodegradable, the changing world of plastics. ICI information leaflet, Billingham

Ivanov, V., V. Stabnikov, Z. Ahmed, S. Dobrenko, and A. Saliuk. 2015. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. International Journal of Environmental Science and Technology 12(2): 725–738. https://doi.org/ 10.1007/s13762-014-0505-3

Jacquel, N., C.W. Lo, Y.H. Wei, H.S. Wu, and S.S. Wang. 2008. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochemical Engineering Journal 39: 15–27. https://doi.org/10.1016/j.bej.2007.11.029

Jiang, G., D.J. Hill, M. Kowalczuk, B. Johnston, G. Adamus, V. Irorere, and I. Radecka. 2016. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 17. https://doi.org/10.3390/ ijms17071157

Kamsiati, E., H. Herawati, dan E.Y. Purwani. 2017. Potensi pengembangan plastik biodegradable berbasis pati sagu dan ubikayu di Indonesia. Jurnal Litbang Pertanian 36(2): 67-76. https://dx.doi/ 10.21082/jp3.v36n2.2017.p67-76

Kang, D.-K., C.-R. Lee, S.H. Lee, J.-H. Bae, Y.-K. Park, Y.H. Rhee, B.H. Sung, and J.-H. Sohn. 2017. Production of polyhydroxyalkanoates from sludge palm oil using Pseudomonas putida S12. Journal of Microbiology and Biotechnology 27(5): 990–994. https://doi.org/10.4014/jmb.1612.12031

Keshavarz, T. and I. Roy. 2010. Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 13(3): 321–326. https://doi.org/10.1016/j.mib.2010.02.006

Keskin, G., G. Kızıl, M, Bechelany, C. Pochat-Bohatier, and M. Oner. 2017. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem. 89(12): 1841–1848. https://doi.org/10.1515/ pac-2017-0401

Khosravi-Darani, K. and D.Z. Bucci. 2015. Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem. Biochem. Eng. Q. 29(2): 275–285. https://doi.org/10.15255/ CABEQ.2014.2260

Koller, M. 2014. Poly(hydroxyalkanoates) for food packaging: application and attempts towards implementation. Applied Food Biotechnology 1(1): 3-15

Kourmentza, C., J. Costa, Z. Azevedo, C. Servin, C. Grandfils, V. De Freitas, and M.A.M. Reis. 2018. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technology 247: 829–837. https://doi.org/10.1016/j.biortech.2017.09.138

Kourmentza, C. and M. Kornaros. 2016. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source. Bioresource Technology 222: 388–398. https://doi.org/10.1016/ j.biortech.2016.10.014

Kresnawaty, I., H.T. Prakoso, D.D. Eris, and A.S. Mulyatni. 2014a. Penapisan bakteri penghasil bioplastik polihidroksialkanoat dari tanah tempat pembuangan sampah dan limbah cair pabrik kelapa sawit. Menara Perkebunan 82: 25-31

Kresnawaty, I., A.S. Mulyatni, D.D. Eris, and H.T. Prakoso. 2014b. Karakterisasi PHA dari Pseudomonas aeruginosa dan Bacillus subtilis yang ditumbuhkan dalam media limbah cair pabrik kelapa sawit. Menara Perkebunan 82: 57-63

Krueger, C.L., C.M. Radetski, A.G. Bendia, I.M. Oliveira, M.A. Castro-Silva, C.R. Rambo, R.V. Antonio, and A.O.S. Lima. 2012. Bioconversion of cassava starch by-product into Bacillus and related bacteria polyhydroxyalkanoates. Electronic Journal of Biotechnology. https://doi.org/10.2225/ vol15-issue3-fulltext-6

Kumar, S. and K.S. Thakur 2017. Bioplastics - classification, production and their potential food applications. Journal of Hill Agriculture 8: 118-129. https://doi.org/ 10.5958/2230-7338.2017.00024.6

Kumar, P. and B.S. Kim. 2018. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Bioresource Technology 269: 544–556. https://doi.org/10.1016/j.biortech.2018.08.120

Kunasundari, B. and K. Sudesh. 2011. Isolation and recovery of microbial polyhydroxyalkanoates. eXPRESS Polymer Letters 5(7): 620–634. https://doi.org/ 10.3144/expresspolymlett.2011.60

Lee, W.S., A.S.M. Chua, H.K. Yeoh, T. Nittami, and G.C. Ngoh. 2015. Strategy for the biotransformation of fermented palm oil mill effluent into biodegradable polyhydroxyalkanoates by activated sludge. Chemical Engineering Journal 269: 288–297. https://doi.org/10.1016/j.cej.2015.01.103

Lee, W.-H., C.-Y. Loo, C.T. Nomura, and K. Sudesh. 2008. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresource Technology 99(15): 6844–6851. https://doi.org/10.1016/j.biortech.2008.01.051

Matavuly, M., and H.P. Molitoris. 2015. In vitro degradation of poly[(r)-3-hydroxybutyrate] and BIOPOL™ by marine-derived fungi. Biologia Serbica 37: 49-63

Melanie, S., J.B. Winterburn, and H. Devianto. 2018. Production of biopolymer polyhydroxyalkanoates (PHA) by extreme halophilic marine Archaea Haloferax mediterranei in medium with varying phosphorus concentration. J. Eng. Technol. Sci. 50(2): 255-271. https://doi.org/10.5614/ j.eng.technol.sci.2017.50.2.7

Możejko, J. and S. Ciesielski. 2013. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering 116(4): 485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014

Możejko-Ciesielska, J. and R. Kiewisz. 2016. Bacterial polyhydroxyalkanoates: Still fabulous?. Microbiological Research 192: 271–282. https://doi.org/10.1016/j.micres.2016.07.010

Mumtaz, T., N.A. Yahaya, S. Abd-Aziz, N. Abdul Rahman, P.L. Yee, Y. Shirai, and M.A. Hassan. 2010. Turning waste to wealth-biodegradable plastics polyhydroxyal-kanoates from palm oil mill effluent – a Malaysian perspective. Journal of Cleaner Production 18(14): 1393–1402. https://doi.org/10.1016/j.jclepro.2010.05.016

Pakalapati, H., C.-K. Chang, P.L. Show, S.K. Arumugasamy, and J.C.-W. Lan. 2018. Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering 126(3): 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016

Pereira, J.R., D. Araújo, A.C. Marques, L.A. Neves, C. Grandfils, C. Sevrin, V.D. Alves, E. Fortunato, M.A.M. Reis, and F. Freitas. 2019. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. Aurantiaca from glycerol. International Journal of Biological Macromolecules 122: 1144–1151. https://doi.org/10.1016/j.ijbiomac.2018.09.064

Rai, R., T. Keshavarz, J.A. Roether, A.R. Boccaccini, and I. Roy. 2011. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering: R: Reports 72(3): 29–47. https://doi.org/ 10.1016/j.mser.2010.11.002

Rao, U., R. Sridhar, and P.K. Sehgal. 2010. Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochemical Engineering Journal 49(1): 13–20. https://doi.org/10.1016/j.bej.2009.11.005

Raza, Z.A., S. Abid, and I.M. Banat. 2018. Polyhydroxyalkanoates: characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation 126: 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001

Ridwansyah, M.Z. Nasution, T.C. Sunarti, dan A.M. Fauzi. 2007. Karakteristik sifat fisiko-kimia pati kelapa sawit. J. Tek. Ind. Pert. 17(1):1-6

Shen, L., E. Worrell, and M. Patel. 2010. Present and future development in plastics from biomass. Biofuels Bioprod. Bioref. 4: 25-40

Sudesh, K., K. Bhubalan, J.-A. Chuah, Y.-K. Kek, H. Kamilah, N. Sridewi, and Y.-F. Lee. 2011. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Applied Microbiology and Biotechnology 89(5): 1373–1386. https://doi.org/10.1007/ s00253-011-3098-5

Syamsu, K., A.M. Fauzi, L. Hartoto, A. Suryani, dan N. Atifah. 2007. Pemanfaatan hidrolisat pati sagu sebagai sumber karbon untuk memproduksi bioplastik polihidroksi alkanoat (PHA) oleh ralstonia eutropha pada sistim kultivasi fed batch. Jurnal Sains dan Teknologi Indonesia 9(1): 17-21

Tripathi, A.D., T. Joshi, K. Khosravi-Darani, M. Koller, S.P. Singh, A. Shrivastava, and S. Mishra. 2016. Recovery and characterization of polyhydroxyalkanoates. Recent Advances in Biotechnologyl 2: 267-303

Tufail, S., S. Munir, and N. Jamil. 2017. Variation analysis of bacterial polyhydroxyal-kanoates production using saturated and unsaturated hydrocarbons. Brazilian Journal of Microbiology 48(4): 629–636. https://doi.org/10.1016/j.bjm.2017.02.008

Urtuvia, V., P. Villegas, M. González, and M. Seeger. 2014. Bacterial production of the biodegradable plastics polyhydroxyal-kanoates. International Journal of Biological Macromolecules 70: 208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001

Varsha, Y.M. and R. Savitha 2011. Overview on polyhydroxyalkanoates: a promising Biopol. J Microbial Biochem Technol 3(5): 099-105. https://doi.org/10.4172/1948-5948.1000059

Wong, Y.-M., C.J. Brigham, C. Rha, A.J. Sinskey, and K. Sudesh. 2012. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresource Technology 121: 320–327. https://doi.org/10.1016/j.biortech.2012.07.015

Yustinah, N. Hidayat, R. Alamsyah, A.M. Roslan, H. Hermansyah, and M. Gozan. 2019. Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. Biocatalysis and Agricultural Biotechnology 18: 101-19. https://doi.org/ 10.1016/j.bcab.2019.01.057

Zahari, M.A.K.M., H. Ariffin, M.N. Mokhtar, J. Salihon, Y. Shirai, and M.A. Hassan. 2015. Case study for a palm biomass biorefinery utilizing renewable non-food sugars from oil palm frond for the production of poly(3-hydroxybutyrate) bioplastic. Journal of Cleaner Production 87: 284–290. https://doi.org/10.1016/j.jclepro.2014.10.010

Zhang, Y., W. Sun, H. Wang, and A. Geng. 2013. Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresource Technology 147: 307–314. https://doi.org/10.1016/ j.biortech.2013.08.029




DOI: http://dx.doi.org/10.21082/psp.v19n2.2020.79-94

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Perspektif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Pusat Penelitian dan Pengembangan Perkebunan
Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu
Bogor 16111

ISSN : 1412-8004

E-ISSN: 2540-8240

Perspektif Review Penelitian Tanaman Industri has been indexed by