KOMPONEN BIOAKTIF KOPI BERPOTENSI SEBAGAI ANTIDIABETES / The Potency of Bioactive Compounds of Coffee as Antidiabetis

Elsera Br Tarigan, Dian Herawati, Puspo Edi Giriwono

Abstract


Recently, the popularity of coffee is gaining popularity. The researcher found that the benefit of coffee was not refreshing only but also improved the quality of health. These effectsexistdue to the natural bioactive compounds found in the coffee. The bioactive compounds of coffee have activity as an antioxidant, anti-inflammation, anti-microbe, and recently as antidiabetic. The major compounds found in coffee were chlorogenic acid, trigonelline, diterpene, and Maillard reaction product (exp.melanoidin). The objective of this study was to explore the bioactive compounds of coffee and the potency antidiabetic, conducted by in-vitro, in-vivo, clinically, and epidemiology intergrately. The in-vitro analysis shown thatcoffee had activity asan inhibitor a-glucosidase, the compounds were chlorogenic acids. In the in-vivo study,coffee brewwas able to reduce blood glucose concentration of a rat model of type-2 diabetes by increasing insulin sensitivity. Caffeine and chlorogenic acids probably had an antagonist effect on glucose response. At the early stage of a clinical study, blood glucose concentration tend too increasedacutely and gradually reduces along with insulin sensitivity higher. A chlorogenic acid had a potency to decrease blood glucose concentration byseveral mechanisms such as -glucosidase inhibitory and raise insulin sensitivity. Furthermore, epidemiology studied shown that the efficacy of coffee consumption in the long-termwas able to reduce the risk of diabetes type 2. The effectiveness of coffee as antidiabetic depends on some factors such as gender and variation of coffee such asvariety, brewing technique, and frequency consumption of coffee.

ABSTRAK 

Konsumen kopi saat ini makin meningkat, kepopulerannya ditandai dengan industri hilir kopi yang merebak di tengah-tengah masyarakat. Konsumsi kopi selain memberikan efek menyegarkan juga memiliki manfaat dalam meningkatkan taraf  kesehatan konsumennya. Komponen bioaktif pada kopi memiliki aktivitas seperti antioksidan, antiinflamasi, antimikroba dan antidiabetes. Kandungan biokatif kopi yang berperan dalam aktivitas tersebut adalah asam klorogenat, trigonelin, diterpen dan produk reaksi Maillard (cth.melanoidin). Tujuan dari tulisan ini adalah menggali senyawa bioaktif yang terdapat pada kopi dan potensinya sebagai antidiabetes secara terpadu baik secara in-vitro, in-vivo, klinis dan epidemiologi. Berdasarkan penelitian secarain–vitrobahwa komponen bioaktif kopi yang berperan dalam menghambat aktivitas a-glukosidase adalah asam klorogenat. Secara in-vivobahwa seduhan kopi yang dikonsumsi oleh tikus penderita diabetes menghasilkan kadar glukosa darah yang menurun karena peningkatan sensitivitas insulin. Efek kafein kemungkinanberlawanan dengan asam klorogenat terhadap glukosa darah. Pada awal pengujian secara klinis kadar glukosa darah akan meningkat secara akut dan kemudian menurun seiring meningkatnya efek asam klorogenat. Asam klorogenat akan berperan dalam menghambat transportasi glukosa dan meningkatkan sensitivitas insulin. Penelitian secara epidemiologi menunjukkan bahwa konsumsi kopi dalam jangka waktu yang lebih lama dapat menurunkan resiko penyakit diabetes mellitus tipe 2. Persentase penurunan penyakit diabetes melitus dipengaruhi oleh faktor gender dan variasi kopi seperti jenis, teknik menyeduh dan frekuensi konsumsi kopi.


Keywords


coffee, antidiabetic, bioactive compounds, absorption, glucose / kopi, antidiabetes, senyawa bioaktif, penyerapan, glukosa

Full Text:

PDF

References


Al-mssallem M, Brown JE. 2013. Arabic coffee increases the glycemic index but not insulinemic index of dates. Saudi Med J 2013; 34 (9)(September):923–928.

Alkaabi J, Al-Dabbagh B, Saadi H, Gariballa S, Yasin J. 2013. Effect of traditional Arabic coffee consumption on the glycemic index of Khalas dates tested in healthy and diabetic subjects. Asia Pac. J. Clin. Nutr.22(4):565–573. doi:10.6133/apjcn.2013.22.4.09.

Alongi M, Anese M. 2018. Effect of coffee roasting on in vitro α-glucosidase activity Inhibition and mechanism of action.pdf. Food Res. Int. J. (111):480–487.

American Diabetes Association. 2014. Diagnosis and classification of diabetes mellitus. Diabetes Care 37(SUPPL.1): doi:10.2337/ dc14-S081.

American Diabetes Association. 2018. 2. Classification and diagnosis of diabetes: Standards of medical care in Diabetesd 2018. Diabetes Care 41S13–S27. doi:10.2337/ dc18-S002.

Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. 2017. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 237623–631. doi:10.1016/j.foodchem.2017.05.142.

Bekedam EK. 2008. Coffee Bew Melanoidins Structural and Functional Properties of Brown-Colored Coffee Compounds. Wageningen University.

Bellesia A, Tagliazucchi D. 2014. Cocoa brew inhibits in vitro α-glucosidase activity: The role of polyphenols and high molecular weight compounds. Food Res. Int. 63439–445. doi:10.1016/j.foodres.2014.03.047.

Bicho NC, Leitão AE, Ramalho JC, de Alvarenga NB, Lidon FC. 2013. Identification of Chemical Clusters Discriminators of Arabica and Robusta Green Coffee. Int. J. Food Prop. 16(4):895–904. doi:10.1080/ 10942912.2011.573114.

Boles A, Kandimalla R, Reddy PH. 2017. Biochimica et Biophysica Acta Dynamics of diabetes and obesity : Epidemiological perspective ☆. BBA - Mol. Basis Dis. 1863(5):1026–1036. doi:10.1016/j.bbadis.2017.01.016.

Boon EAJ, Croft KD, Shinde S, Hodgson JM, Ward NC. 2017. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers. Food Funct. 8(9):3366–3373. doi:10.1039/c7fo00926g.

Burleigh Dodds Series in Agicultural Science. 2018. Achieving Sustainable Cultivation Of Coffee Breeding And Quality Traits. UK: British Library Cataloguing.

Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. 2013. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24(8):1415–1422. doi:10.1016/ j.jnutbio.2013.05.001.

Van Dam RM, Feskens EJM. 2002. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 360(9344):1477–1478. doi:10.1016/S0140-6736(02)11436-X.

Van Dam RM, Dekker JM, Nijpels G, Stehouwer CDA, Bouter LM, Heine RJ. 2004. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: The Hoorn Study. Diabetologia 47(12):2152–2159. doi:10.1007/s00125-004-1573-6.

Diyah NW, Ambarwati A, Warsito GM, Niken G, Heriwiyanti ET, Windysari R, Prismawan D, Hartasari RF, Purwanto P. 2018. Evaluasi Kandungan Glukosa Dan Indeks Glikemik Beberapa Sumber Karbohidrat Dalam Upaya Penggalian Pangan Ber-Indeks Glikemik Rendah. J. Farm. Dan Ilmu Kefarmasian Indones. 3(2):67. doi:10.20473/ jfiki.v3i22016.67-73.

Esquivel P, Jiménez VM. 2012. Functional properties of coffee and coffee by-products. Food Res. Int. 46(2):488–495. doi:10.1016/ j.foodres.2011.05.028.

Farah A. 2012. 2 Coffee Constituents. In Coffee: Emerging Health Effects and Disease Prevention, Y.-F. Chu (Ed. by), Blackwell Publishing Ltd, pp. 21–58.

Farah A, dePaula Lima J. 2019. Consumption of Chlorogenic Acids through Coffee and Health Implications. Beverages 5(1):11. doi:10.3390/beverages5010011.

Farah A, Monteiro M, Donangelo CM, Lafay S. 2008. Chlorogenic Acids from Green Coffee Extract are Highly Bioavailable in Humans. J. Nutr. 138(12):2309–2315. doi:10.3945/ jn.108.095554.

Faraji H. 2018. Review Article Effect of Decaffeinated Coffee‑enriched Chlorogenic Acid on Blood Glucose Levels in Healthy Controls: A Systematic Review. . doi:10.4103/ijpvm.IJPVM_343_17.

Fiorentino T, Prioletta A, Zuo P, Folli F. 2013. Hyperglycemia-induced Oxidative Stress and its Role in Diabetes Mellitus Related Cardiovascular Diseases. Curr. Pharm. Des. 19(32):5695–5703. doi:10.2174/1381612811319320005.

Fujioka K, Shibamoto T. 2008. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem. 106(1):217–221. doi:10.1016/j.foodchem.2007.05.091.

Han X, Zhang Y, Guo J, You Y, Zhan J, Huang W. 2019. Chlorogenic Acid Stimulates the Thermogenesis of Brown Adipocytes by Promoting the Uptake of Glucose and the Function of Mitochondria. J. Food Sci. 1750-3841.14838. doi:10.1111/1750-3841.14838.

Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11(4):1365–1402. doi:10.3390/ijms11041365.

Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. 2019a. Three major compounds showing significant antioxidative, α-glucosidase inhibition, and antiglycation activities in Robusta coffee brew. Int. J. Food Prop. 22(1):994–1010. doi:10.1080/10942912.2019.1622562.

Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. 2019b. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Sci. Biotechnol. 28(1):7–14. doi:10.1007/s10068-018-0442-x.

Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. 2019c. Antioxidant, anti-α-glucosidase and anti-glycation activities of coffee brew from Robusta coffee beans roasted at different levels. Int. Food Res. J. 26(4):1305–1313.

Higdon J V, Frei B, Higdon J V, Frei B. 2016. Coffee and Health : A Review of Recent Human Coffee and Health : A Review of Recent Human Research. 8398(November): doi:10.1080/10408390500400009.

International Diabetes Federation (IDF). 2015. IDF Diabetes Atlas Seventh Edition. International Diabetes Federation.

Jeon J, Kim H, Jeong I, Hong S, Oh M, Yoon M. 2019. Contents of chlorogenic acids and caffeine in various coffee-related products. J. Adv. Res. 1785–94. doi:10.1016 /j.jare.2019.01.002.

Johnston KL, Clifford MN, Morgan LM. 2003. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 78(4):728–733. doi:10.1093/ajcn/78.4.728.

Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, Koenig W, Sundvall J, Bidel S, Kuha S, et al. 2010. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: A clinical trial. Am. J. Clin. Nutr. 91(4):950–957. doi:10.3945/ajcn.2009.28548.

Kim S. 2015. Alpha-Glucosidase Inhibitor Isolated from Coffee. J. Microbiol. Biotechnol 25(2):174–177. doi:doi.org/10.4014/jmb.1411.11057.

Kim YA, Keogh JB, Clifton PM. 2016. Polyphenols and glycémie control. Nutrients 8(1): doi:10.3390/nu8010017.

King GL, Loeken MR. 2004. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem. Cell Biol. 122(4):333–338. doi:10.1007/s00418-004-0678-9.

Kreicbergs V, Dimins F. 2011. Biologically Active Compounds in Roasted Coffee. In Food Balt Proceedings of the 6th, pp. 110–115.

Langner E, Rzeski W. 2014. Biological properties of melanoidins: A review. Int. J. Food Prop. 17(2):344–353. doi:10.1080/10942912.2011.631253.

Limwachiranon J, Huang H, Li L, Lin X, Zou L, Liu J, Zou Y, Aalim H, Duan Z, Luo Z. 2019. Enhancing stability and bioaccessibility of chlorogenic acid using complexation with amylopectin: A comprehensive evaluation of complex formation, properties, and characteristics. Food Chem. . doi:10.1016/ j.foodchem.2019.125879.

Lin WY, Xaiver Pi-Sunyer F, Chen CC, Davidson LE, Liu CS, Li TC, Wu MF, Li CI, Chen W, Lin CC. 2011. Coffee consumption is inversely associated with type 2 diabetes in Chinese. Eur. J. Clin. Invest. 41(6):659–666. doi:10.1111/j.1365-2362.2010.02455.x.

Mayfield J. 1998. Diagnosis and classification of diabetes mellitus: New criteria. Am. Fam. Physician 58(6):1355–1362.

de Melo Pereira G V., de Carvalho Neto DP, Magalhães Júnior AI, Vásquez ZS, Medeiros ABP, Vandenberghe LPS, Soccol CR. 2019. Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chem. 272(December 2017):441–452. doi:10.1016/j.foodchem.2018.08.061.

Moisey LL, Robinson LE, Graham TE. 2010. Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males. Br. J. Nutr. 103(6):833–841. doi:10.1017/S0007114509992406.

Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C. 2007. Chlorogenic Acid Compounds from Coffee Are Differentially Absorbed and Metabolized in Humans. J. Nutr. 137(10):2196–2201. doi:10.1093/jn/ 137.10.2196.

Morales FJ, Somoza V, Fogliano V. 2012. Physiological relevance of dietary melanoidins. Amino Acids 42(4):1097–1109. doi:10.1007/s00726-010-0774-1.

Mukti KS, Rohmawati N, Sulistiyani S. 2018. Analisis Kandungan Karbohidrat, Glukosa, Dan Uji Daya Terima Pada Nasi Bakar, Nasi Panggang, Dan Nasi Biasa. J. Agroteknologi 12(01):90. doi:10.19184/j-agt.v12i1.8333.

Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, et al. 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 9767–74. doi:10.1016/j.biopha.2017.10.064.

Reunanen A, Heliövaara M, Aho K. 2003. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 361(9358):702–703. doi:10.1016/S0140-6736(03)12583-4.

Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S. 2004. Coffee and incidence of diabetes in Swedish women: A prospective 18-year follow-up study. J. Intern. Med. 255(1):89–95. doi:10.1046/ j.1365-2796.2003.01260.x.

Salazar-Martinez E, Willett WC, Ascherio A, Manson JAE, Leitzmann MF, Stampfer MJ, Hu FB. 2004. Coffee Consumption and Risk for Type 2 Diabetes Mellitus. Ann. Intern. Med. 140(1): doi:10.7326/0003-4819-140-1-200401060-00005.

Sasaki S. 2019. Rice and prevention of type 2 diabetes: Narrative review of epidemiologic evidene. J. Nutr. Sci. Vitaminol. (Tokyo). 65S38–S41. doi:10.3177/ jnsv.65.S38.

Shokouh P, Jeppesen PB, Christiansen CB, Mellbye FB, Hermansen K, Gregersen S. 2019. Efficacy of arabica versus robusta coffee in improving weight, insulin resistance, and liver steatosis in a rat model of type-2 diabetes. Nutrients 11(9): doi:10.3390/nu11092074.

Singh P, Sugirtha PK. 2015. In vitro anti-diabetic activity of compounds from pithecellobium dulce fruit peel. Int. J. Pharm. Chem. 5(4):123–127. doi:10.7439/IJPC.V5I4.1873.

Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Denise C, Augustine A, Batista J, Elias C, Maria V, Rosa M, et al. 2019. Coffee , caffeine , chlorogenic acid , and the purinergic system. Food Chem. Toxicol. J 123(September 2018):298–313. doi:10.1016/j.fct.2018.10.005.

Sunarharum WB, Williams DJ, Smyth HE. 2014. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 62315–325. doi:10.1016/ j.foodres.2014.02.030.

Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J. 2011. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl. Physiol. Nutr. Metab. 36(5):650–659. doi:10.1139/h11-072.

Tuomilehto J, Hu G, Bidel S, Lindström J, Jousilahti P. 2004. Coffee Consumption and Risk of Type 2 Diabetes Mellitus among Middle-aged Finnish Men and Women. J. Am. Med. Assoc. 291(10):1213–1219. doi:10.1001/jama.291.10.1213.

Votavova L, Voldrich M, Sevcik R, Cizkova H, Mlejnecka J, Stolar M, Fleisman T. 2009. Changes of Antioxidant Capacity of Robusta Coffee during Roasting. Czech J. Food Sci. 27(February):549–551. doi:10.17221/1105-CJFS.

Wollgast J. 2004. The contents and effects of polyphenols in chocolate. Doktorarbeit 346.

Yin Z, Zhang W, Feng F, Zhang Y, Kang W. 2015. α -Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 3(3–4):136–174. doi:10.1016/j.fshw.2014.11.003.

Zhang W, Lopez-Garcia E, Li TY, Hu FB, Van Dam RM. 2009. Coffee Consumption and Risk of Cardiovascular Diseases and All-Cause Mortality Among Men With Type 2 Diabetes. . doi:10.2337/dc08-2251.

Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard B V. 2011. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: The Strong Heart Study. Nutr. Metab. Cardiovasc. Dis. 21(6):418–423. doi:10.1016/ j.numecd.2009.10.020.




DOI: http://dx.doi.org/10.21082/psp.v19n1.2020.41-52

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Perspektif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View My Stats

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Pusat Penelitian dan Pengembangan Perkebunan
Jln. Tentara Pelajar No 1, Kampus Penelitian Cimanggu
Bogor 16111

ISSN : 1412-8004

E-ISSN: 2540-8240

Perspektif Review Penelitian Tanaman Industri has been indexed by