Masalah Kadar Cl Daun Tembakau Virginia pada Tanah Vertisols Bojonegoro

ABDUL RACHMAN
Balai Penelitian Tanaman Tembakau dan Serat
Indonesian Tobacco and Fiber Crops Research Institute
JL. Karangploso Kotak Pos 199 Malang – Jawa Timur

ABSTRAK

Kadar Cl daun yang tinggi dapat menurunkan mutu tembakau. Masalah Cl pernah mencuat tahun 1985 di Sulawesi Selatan dan pada tahun 1988 di Bojonegoro dan Jombang. Akhir-akhir ini untuk tanah Vertisol Bojonegoro masalah ini masih dipersoalkan. Sifat tanah Vertisol Bojonegoro, berkadar liat tinggi dan berlahan datar, memberi peluang tanah berkadar Cl tinggi. Hubungan kadar Cl tanah dengan kadar Cl daun bersifat linier dengan persamaan y = 0,1297 + 0,0128 x \((R^2 = 0,98) \), dimana x = ppm kadar Cl tanah, y = % kadar Cl di daun bawah. Apabila kadar Cl daun tertinggi yang diperbolehkan 1%, maka kadar Cl tanah tidak boleh melampaui 68 ppm. Hubungan pemupukan KCl pada padi pada tanah Vertisol Bojonegoro, selama tiga tahun percobaan adalah : y = 0,789 + 0,0036 x \((R^2 = 0,94) \), dimana x = kg/ha KCl pada padi, dan y = % kadar Cl di daun bawah. Dengan kadar Cl kritis 1% di daun tembakau, maka dosis pemupukan KCl pada padi tidak boleh melebihi 50 kg/ha. Beberapa teknik budidaya telah dicoba untuk menurunkan kadar Cl daun tembakau. Sistem tumpangsari dapat menurunkan kadar Cl daun tembakau. Tetapi karena sangat menurunkan hasil tembakau belum dapat dianjurkan. Peningkatan populasi tanam sampai 60.000 tanaman/ha dan perbedaan bentuk hasil (krosok vs rajangan) tidak berpengaruh pada kadar Cl daun tembakau. Tembakau rajangan virginia menyusun 12% dari blending tembakau untuk rokok kretek. Blending tembakau diharapkan dapat mengurangi pengaruh jelek daripada tembakau Bojonegoro yang berkadar Cl tinggi. Saran yang dapat disampaikan adalah agar tidak menggunakan pupuk mengandung Cl tinggi secara langsung pada tanaman tembakau. Penggunaan pupuk KCl pada padi dibatasi paling tinggi 50 kg/ha. Perlu pemetaan daerah berdasarkan kadar Cl daun, untuk mengetahui penyebaban masalah Cl. Pada tanaman padi sumber pupuk kalium alternatif dapat digunakan pupuk ZK. Saran lain adalah perlu dicoba penggunaan bahan organik dan gips untuk memperbaiki sifat infiltrasi tanah, perlu dilakukan pengukuran angkutan panen terhadap kadar Cl tanah, diukur pula kadar Cl air hujan dan air irigasi, serta pemetaan kadar Cl tanah dan daun tembakau pada lahan berkadar liat tinggi (lebih 35 % liat) dengan kemiringan < 1 %.

Kata kunci : Nicotiana tabacum, tembakau, virginia, rajangan, Cl, Vertisols.

ABSTRACT

Cl content problem of virginia tobacco grown in Vertisols in Bojonegoro

High Cl content of cured leaves can decrease the quality of tobacco. The problem of leaf Cl content once emerged in South Sulawesi in 1985, and in Bojonegoro and Jombang (East Java) in 1988. Currently this problem is still questioned and it stimulates discussion in broader sense. Soil properties of Bojonegoro Vertisols is high in clay and has flat topography. This properties give high Cl content opportunity. The relation between soil Cl content with cured leaf Cl content is in linier equation i.e. \(y = 0,1297 + 0,0128 x \) , \((R^2 = 0,98) \), in which \(y = % \) Cl in lower leaf, and \(x = \) ppm Cl in soil. If upper limit of Cl content in which be allowed of 1%, so the Cl content of soil is not more than 68 ppm. The relation between KCl rate of rice fertilization with Cl content of tobacco grown after rice in Bojonegoro Vertisols for three years experiment in succession is in linier equation i.e. \(y = 0,789 + 0,0036 x \) \((R^2 = 0,94) \), in which \(y = % \) Cl in lower leaf, and \(x = \) kg/ha KCl of rice fertilization. Considering the upper limit of Cl content in which be allowed and of cured-leaf burning ability of good rate, KCl fertilization rate on rice is not more than 50 kg/ha. Several cultural practices have been tested to decrease Cl content of tobacco leaves. Intercropping tobacco with some other crops decreased Cl content significantly, unfortunately it decreased tobacco yield considerably. Increasing plant population up to 60.000 plants/ha and different leaf affect processing did affect give Cl content. Sliced tobacco about 12% of tobacco blending of clove cigarettes. The blending tobacco is expected to reduce poor effect of high Cl content of sliced virginia tobacco from Bojonegoro. It is suggested not to use fertilizer with high Cl content directly on tobacco crops, do not use KCl fertilizer more than 50 kg/ha on rice crops, use alternative K fertilizer with low Cl content like ZK, use organic matter and gypsum to amend infiltration property of soil, test the effects of Cl removal of the soil through harvesting, measure the Cl content of irrigation and rain water to know contribution of this Cl sources, and mapping Cl content of soil and tobacco leaves from several tobacco regions with High clay content (more 35%) and flat topography (slope less than 1%).

Key words : Nicotiana tabacum, tobacco, virginia, rajangan, Cl content, Vertisol, Bojonegoro.
PENDAHULUAN

Tingginya kadar CI krosok diduga karena pemakaian pupuk KCl pada tanaman pada yang ditam sebelum tembakau atau pemberian pupuk KCl pada tanaman tembakau. Ternyata krosok yang diambil dari berbagai gudang di Bojonegoro dan Jombang setelah dianalis, kadar CI-nya cukup bervariasi. Tetapi sebagian besar contoh krosok berkadar di atas 1% dan bahkan ada yang berkadar 2% dan 3%. Rendahnya mutu pada saat itu juga diperparah oleh iklim yang buruk. Sejak saat itu pada daerah-daerah penanaman tembakau dijikaan tidak menggunakan pupuk yang mengandung unsur CI tinggi, terutama pupuk KCl. Karena diduga penyebabnya adalah penggunaan pupuk KCl di daerah Bojonegoro dan sekitarnya yang selain digunakan untuk tanaman pada juga diberikan pada tanaman tembakau (Balittas, 1988).

Perkembangan selanjutnya namapun alam beberapa pabrik rokok masih mempermasalahkan tingginya kadar CI daun tembakau dari Bojonegoro. Hal ini terutama disampaikan pada tiap pertemuan tahunan antara unsur pengguna (Perwakilan Pabrik Rokok atau Pengusah tembakau), petani, dan instansi pemerintah terkait. Dikhawatirkan daerah Bojonegoro akan ditadingkan oleh pabrik rokok dan pindah ke daerah lain yang tidak banyak masalah. Di Kabupaten Bojonegoro, tanaman tembakau sangat menentukan ekonomi petani. Pada daerah tersebut karena sifat tanahnya yang retak-retak di musim kemarau, maka tanaman tembakau merupakan satu-satunya jenis tanaman yang paling menguntungkan ditanam di musim kemarau.

Dalam makalah ini akan diulas hasil-hasil penelitian tentang masalah CI pada tanaman tembakau, khususnya tembakau virginia pada tanah Vertisol Bojonegoro. Makalah ini diharapkan menjadi salah satu bahan acuan dalam menangani masalah CI pada tanaman tembakau. Walau pun masih dirasa perlu adanya penelitian-penelitian lebih lanjut mengenai pengaruh angkutan panen pada kadar CI tembakau dan pemetaan kadar CI tanah dan daun tembakau pada tanah Vertisol Bojonegoro dan tanah-tanah berat lainnya, pengukuran kadar CI air irrigasi dan air hujan dan pengaruh penggunaan bahan organik dan gipsum untuk memperbaiki sifat infiltrasi tanah.

DAUR UNSUR CI

Di alam, unsur CI tersedia relatif sedikit, di kerak bumi sekitar 500 ppm. Kandungan CI di batuan bervariasi, seperti pada batu metamorfik berkadar 500 ppm, pada batu kapur kurang dari 200 ppm, dan batu pasir berkadar sangat sedikit. Kisaran umum dari tanah 20-900 ppm, tetapi rata-rata pada kebanyakan tanah 100 ppm. Bagian terbesar CI tanah berupa garam terlarut seperti NaCl, CaCl, dan MgCl (Lindsay, 1976).

Hilangnya ion CI dari suatu areal tanah dapat melalui pencucian dan angkutan panen. Ion CI bermuatan negatif dan tidak diikat oleh mineral tanah, sehingga merupakan ion yang paling mobil dalam tanah dan mudah hilang melalui pencucian. Karena sifat tersebut, tingkat ketersediaan unsur ini sulit ditetapkan dari analisis tanah. Tingginya tingkat ketersediaan dalam tanah dapat didekati dengan tingginya kadar CI pada bagian tanaman yang tumbuh di situ. Pada tanah berdrainase baik proses pencuciannya cepat. Apabila tembakau ditanam
di daerah tersebut akan berkadar Cl rendah (Reisenauer et al., 1973; Peedin, 1997).

Sebagian besar spesies tanaman menyerap ion Cl dari larutan tanah secara cepat dan dalam jumlah besar. Tanaman mampu menyerap ion Cl sampai kadar di daun mencapai 10%. Kadar di batang dapat mencapai 4-5 kali tingkat di daun. Tingginya serapan Cl oleh tanaman berbanding lurus dengan konsentrasi ion tersebut yang ada dalam larutan tanah (Rachman et al., 1986; Peedin, 1999). Oleh karena itu kehilangan Cl melalui angkutan panen cukup berarti. Tanah yang mengandung 2 ppm Cl dinyatakan rendah. Tanaman yang tumbuh di daerah dengan kadar Cl rendah apabila dipupuk Cl akan memberikan respon positif. Namun jarang dijumpai tanah-tanah pertanian kekurangan unsur Cl, karena mendapat tambahan dari berbagai sumber. Pemasukan Cl ke suatu areal tanah dapat berasal dari udara, irigasi, pemupukan dan penggunaan pestisida. Pemasukan Cl dari udara berupa Cl dalam air hujan dan udara yang sebagian besar berasal dari air laut. Makin jauh dari pantai kadar Cl dari air hujan atau udara akan makin kecil, karena efek pengenceran oleh udara. Air hujan di daerah pantai mengandung 2 ppm Cl, dan pada jarak 800 km dari pantai kadar tersebut menurun menjadi 0,2 ppm. Penambahan Cl per tahun untuk daerah pantai dari air hujan lebih dari 100 kg/ha. Selain itu penambahan Cl dapat terjadi oleh penyeraan langsung gas HCI udara oleh tanah maupun tanaman (Reisenauer et al., 1973).

Penggunaan air irigasi dapat meningkatkan kadar Cl tanah maupun tanaman. Di Amerika Serikat dan Zimbabwe irigasi menyebabkan kadar Cl daun tembakau lebih tinggi dibanding tanpa irigasi. Di Carolina Utara, irigasi berkadar 4-55 ppm. Kadar Cl daun tembakau naik 0,009% untuk setiap 1,12 kg Cl/ha yang ditambahkan. Di India air irigasi dapat berkadar 103 ppm. Pada tanah berkadar 30 ppm Cl, dengan 3 kali irigasi dapat menaikan kadar Cl daun tembakau dari 0,65% menjadi 3,06% (Akehurst, 1981). Tsai (1979) mendapatkan batas atas kadar Cl air irigasi untuk tembakau virginia fc di Taiwan 24 ppm agar kadar Cl daun tembakau tidak melebihi 1%. Di Australia, air yang mengandung lebih dari 40 ppm Cl tidak sesuai, dan dibatasi paling tinggi 25 ppm (Chouteau dan Fouconnier, 1988).

Pupuk kandang juga mengandung Cl, seperti pupuk kandang di Perancis tipat ton dapat mengandung 2 kg Cl. Pupuk berasal dari kotoran kambing berkadar Cl lebih tinggi dari pada kotoran sapi. Kotoran unggas mengandung 3,9% Cl. Pengaruh pupuk kandang terhadap kadar Cl daun tembakau tergantung pada sifat pupuk dan sifat fisik tanah terutama sifat drainasenya (Chouteau dan Fouconnier, 1988).

Pestisida yang mengandung unsur Cl besar kemungkinannya dapat meningkatkan kadar Cl daun tembakau, mengingat akar maupun tanaman bagian atas dapat menyerap Cl (Chouteau dan Fouconnier, 1988). Di Amerika Serikat dosis fumigant yang direkomendasikan (seperti Telone C-17 atau Chlor-O-Pic) dapat memberikan 30 - 80 kg Cl/ha (Smith, 2003).
STATUS UNSUR CI PADA TANAMAN TEMBAKAU

Boyer et al. (1954) menyatakan bahwa unsur Cl merupakan unsur esensial bagi tanaman. Ini berarti bahwa tanaman tidak dapat tumbuh normal atau melangsungkan daur hidupnya tanpa adanya unsur ini. Selanjutnya Salisbury dan Ross (1978) menyatakan bahwa Cl bukan penyusun metabolit tanaman tetapi berperan dalam fosforilasi fotosintetik untuk evolusi oksigen dalam fotosintesis II. Ion Cl juga berfungsi meningkatkan tekanan osmotik sel dan sebagai sifat hidrofilik ion Cl meningkatkan kandungan air jaringan tanaman, sehingga tanaman lebih tahan terhadap kekeringan.

Apabila tanaman kekurangan Cl gejala awalnya adalah layu, selanjutnya klorosis dan berwarna merah tua. Gejala kekurangan Cl di lapangan jarang terjadi, karena Cl cukup berasal dari udara, air hujan, urine, dan keringat binatang (Gardner et al., 1985).

Karena unsur Cl mudah terserap, maka tanaman mudah kelebihan atau keracunan.

Laju serapan berbanding lurus dengan konsentrasi Cl dalam larutan tanah (Rachman et al., 1986; Flower, 1999). Serapan Cl oleh tanaman dikendalikan secara metabolik, peka pada suhu dan penghambat metabolik. Pada tanaman berjaringan hijau, penyeraian diperbesar oleh penyinaran. ATP yang terbentuk selama fosforilasi fotosintetik sebagai sumber energi penyeraan aktif (Mengel dan Kirkby, 1979).

Efek persaingan dengan ion lain seperti NO₃ dan SO₄ dapat menghambat serapan Cl. Serapan Cl juga berkorelasi negatif dengan pH dan dipengaruhi oleh unsur lain (McCants dan Wolzt, 1967).

Menurut Akehurst (1981), daun dengan kadar Cl 0,5% memberikan mutu yang baik, karena mempunyai tekstur yang lebih baik dan cukup higroskopis sehingga dapat dipegang tanpa rusak. Batas atas kadar Cl daun yang dapat diterima masih beragam, tetapi pada umumnya 1% (Tsai, 1979; Akehurst, 1981; Chouteau dan Fouconnier, 1988; Collins dan Hawks, 1993). Pada tembakau tertentu kadar 2% Cl masih bisa diterima (Orphanos dan Metochis, 1985). Sedangkan menurut Chouteau dan Fouconnier (1988) batas atas kadar Cl daun tembakau yang masih dapat diterima adalah 1,5%.

Tembakau cerutu pembungkus (cigar wrapper) tidak ada kompromi harus mempunyai daya bakar yang baik, pembaraan rata, sifat abu baik dan tidak mudah runtuh. Tembakau untuk bahan sigaret atau filler masih mungkin mencampur tembakau berdaya bakar jelek dengan tembakau berdaya bakar baik sehingga dicapai daya bakar yang diinginkan (Akehurst, 1981).

PENDEKATAN MASALAH CI PADA TEMBAKAU VIRGINIA DI BOJONEGORO DAN PEMECAHANNYA

Dalam usaha pendekatan masalah dan selanjutnya cara pencemarnya perlu lebih dahulu dilihat aspek yang erat kaitannya dengan tingginya CI tanah. Aspek tersebut meliputi sifat tanah dan lahan, pengaruh pemupukan KCl pada padi, pengaruh teknik budidaya, dan blending tembakau.

Sifat tanah dan lahan

Tabel 1. Sifat fisika dan kimia tanah di Kebun Percobaan Pekuwon, Bojonegoro* dan kadar liat beberapa tanah di Bojonegoro **

<table>
<thead>
<tr>
<th>Sifat tanah</th>
<th>KP</th>
<th>Vertisol</th>
<th>Vertisol</th>
<th>Inceptisol</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-H2O</td>
<td>8,20</td>
<td>6,20</td>
<td>6,00</td>
<td>10,50</td>
</tr>
<tr>
<td>C-organic (%)</td>
<td>0,62</td>
<td>0,10</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>N-total (%)</td>
<td>0,10</td>
<td>6,00</td>
<td>0,00</td>
<td>6,00</td>
</tr>
<tr>
<td>P-Olsen (ppm)</td>
<td>6,00</td>
<td>0,55</td>
<td>0,50</td>
<td>0,00</td>
</tr>
<tr>
<td>K-NEH4Oat 1N pH</td>
<td>7,7 (me/100g)</td>
<td>8,00</td>
<td>8,00</td>
<td>8,75</td>
</tr>
<tr>
<td>KTN (me/100g)</td>
<td>80,00</td>
<td>62,50</td>
<td>62,00</td>
<td>73,45</td>
</tr>
<tr>
<td>Tekstur :</td>
<td>liat</td>
<td>15,40</td>
<td>85,00</td>
<td>4,20</td>
</tr>
<tr>
<td>Liat (%)</td>
<td>80,40</td>
<td>80,75</td>
<td>73,45</td>
<td>74,60</td>
</tr>
<tr>
<td>Debu (%)</td>
<td>15,40</td>
<td>85,00</td>
<td>4,20</td>
<td>85,00</td>
</tr>
<tr>
<td>Pasir (%)</td>
<td>4,20</td>
<td>85,00</td>
<td>4,20</td>
<td>85,00</td>
</tr>
</tbody>
</table>

Tekstur tanah termasuk kategori liat, ini berarti bahwa gerakan air tanahnya sangat lambat. Sifat ini juga merupakan ciri umum dari tanah Vertisols yaitu bertekstur liat (Smith et al., 1984; Venkateswaru, 1984; Swindle, 1984). Seperti dikemukakan oleh Sanchez (1976) bahwa tanah Vertisols termasuk tanah berat dan fraksi liat tersusun dari mineral liat 2:1 lebih dari 50% dari jenis montmorillonit. Ciri mineral liat ini mempunyai sifat menyusut dan mengembang sesuai dengan kondisi air tanahnya. Kekurangan luai infiltrasinya paling rendah di antara jenis tanah yang lain minimum 0,1 cm/jam, dan maksimum 9,5 cm/jam. Sebagai pembanding tanah Oxisols mempunyai luai infiltrasi yang tertinggi minimum 8,4 cm/jam dan maksimum 15,4 cm/jam. Luai infiltrasi awal juga paling rendah 10 cm/jam, dibanding oxisols 20 cm/jam. Luai infiltrasi ini menentukan tingkat hinggapnya unsur CI dari tanah melalui pencucian (leaching). Ini berarti pada tanah vertisol Bojonegoro kehilangan CI melalui pencucian sangat kecil.

Daerah pengembangan tembakau virginia termasuk datar, bahkan beberapa tempat terdapat cekungan-cekungan. Pada kondisi demikian aliran air permukaan sangat lambat, sehingga pada musim hujan cenderung banyak lahan yang tergenang dan banyak bahan-bahan yang terangkut air diendapkan disitu. Pada musim kemarau dengan menguapnya air akan tertimbun zat-zat hara termasuk unsur CI di atas lapisan tanah.

Dari sifat tanah berkadar liat tinggi dengan laju infiltrasi rendah dan sifat lahan yang datar dan gerakan air lambat, dan intensifikasi tanaman padi pada umumnya memakai pupuk KCl, maka tanah di Bojonegoro berpotensi mengandung CI tinggi.

Hubungan kadar CI di dalam tanah dan di dalam daun

Bagaimana sifat hubungan antara kadar CI di dalam tanah dengan kadar CI di daun dilakukan
percobaan pot. Hasil percobaan menunjukkan bahwa terdapat hubungan linier positif antara kandungan Cl dalam tanah (ppm) dengan kadar Cl di daun (%) dengan persamaan :
\[y = 0,1297 + 0,0128 x \] (R² = 0,98), untuk daun bawang,
\[y = -0,1543 + 0,0126 x \] (r = 0,99), untuk daun tengah, dan
\[y = 0,0379 + 0,0049 x \] (R² = 0,88), untuk daun atas (Rachman et al., 1986). Hasil percobaan ini sesuai dengan sifat Cl yang mudah tersedia dan terserap oleh tanaman (Akehurst, 1981). Tampak pula kadar Cl daun bawang lebih tinggi dari pada kadar Cl daun tengah dan atas (koefisien a dan b dari persamaan hubungan antara kadar Cl dari tanah dan daun tembakau, tertinggi pada daun bawang). Kecenderungan ini sesuai dengan McCants dan Woltz (1967); Tso (1972), dan Flower (1999). Agar kadar Cl daun tembakau tidak melebihi 1%, maka kandungan Cl tanah tidak lebih dari 68 ppm (perhitungan berdasar persamaan untuk daun bawang).

Pengaruh pemupukan KCl pada padi terhadap kadar Cl daun tembakau

Apakah ada pengaruh pemupukan KCl pada padi serta pengaruh susulannya terhadap kadar Cl tembakau dilakukan percobaan lapang di tanah Vertisol (Grumusol) Bojonegoro dan tanah Entisol (Regosol) Buleleng, Bali. Percobaan tersebut dilakukan selama 3 tahun berturut-turut. Hasil percobaan menunjukkan bahwa peningkatan pemupukan KCl pada padi di tanah Vertisol Bojonegoro dari 0 menjadi 200 kg KCl/ha meningkatkan kadar Cl krosok dari 0,82 % menjadi 1,53 %, untuk daun bawang, dan dari 0,80 % menjadi 1,37 % untuk daun tengah dari tembakau virginia yang ditanam setelah padi. Peningkatan kadar Cl krosok ini lebih kecil apabila pemupukan KCl ini dilakukan terhadap tanaman padi di tanah Entisol Buleleng, Bali. Kadar Cl krosok meningkat dari 0,25 menjadi 0,31 %, untuk daun bawang dan dari 0,25 % menjadi 0,33 % untuk daun tengah. Perbedaan ini karena sifat drainase yang lebih baik dari tanah entisol daripada tanah vertisol. Dari hasil penelitian tersebut terlihat bahwa pemupukan KCl pada padi di tanah entisol Bali tidak ada masalah, artinya sampai dosis 200 kg KCl/ha kadar Cl krosok masih di bawah 1 %. Namun untuk tanah Vertisol Bojonegoro harus hati-hati, karena pada dosis pemupukan 100 kg KCl/ha, kadar Cl krosok sudah lebih 1 % (Tabel 2).

Tabel 2. Pengaruh pemupukan KCl pada padi terhadap kadar Cl krosok dari tembakau virginia fc yang ditanam sesudah padi.

<table>
<thead>
<tr>
<th>Pemupukan KCl pada padi (kg/ha)</th>
<th>Kadar Cl krosok (%)</th>
<th>Daun bawang</th>
<th>Daun tengah</th>
<th>Daun bawang</th>
<th>Daun tengah</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,82 a</td>
<td>0,80 a *)</td>
<td>0,25 a</td>
<td>0,25 a</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0,94 a</td>
<td>0,93 ab</td>
<td>0,26 a</td>
<td>0,27 a</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1,14 b</td>
<td>1,08 bc</td>
<td>0,25 a</td>
<td>0,29 ab</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1,20 b</td>
<td>1,16 c</td>
<td>0,31 b</td>
<td>0,35 c</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1,53 c</td>
<td>1,37 d</td>
<td>0,31 b</td>
<td>0,33 bc</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : *) Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0,05 dengan uji Duncan.

Sumber : 1). Rachman et al. (1993)

Apabila dosis pemupukan KCl pada padi dihubungkan dengan kadar Cl krosok untuk tembakau virginia Bojonegoro, maka diperoleh persamaan :
\[y = 0,789 + 0,0036 x \] (R² = 0,94), untuk daun bawang, dan
\[y = 0,792 + 0,0275 x \] (R² = 0,98), untuk daun tengah, dimana y adalah persentase kadar Cl daun tembakau dan x adalah dosis pemupukan KCl pada padi. Apabila kadar Cl kritis 1 %, maka dosis pemupukan KCl pada padi yang diperbolehkan tidak lebih dari 60 dan 75 kg/ha berturut-turut untuk daun bawang dan daun tengah.

Tabel 3. Hubungan kadar Cl daun dengan daya bakar tembakau virginia fc di Bojonegoro.

<table>
<thead>
<tr>
<th>Pemupukan KCl pada padi (kg/ha)</th>
<th>Kadar Cl (%)</th>
<th>Lama pembaraan (detik)</th>
<th>Kategori mutu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daun bawah</td>
<td>Daun tengah</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.82 a</td>
<td>0.80 a</td>
<td>12.45</td>
</tr>
<tr>
<td>50</td>
<td>0.94 a</td>
<td>0.93 ab</td>
<td>13.32</td>
</tr>
<tr>
<td>100</td>
<td>1.14 b</td>
<td>1.08 bc</td>
<td>11.41</td>
</tr>
<tr>
<td>150</td>
<td>1.20 b</td>
<td>1.16 c</td>
<td>10.70</td>
</tr>
<tr>
<td>200</td>
<td>1.53 c</td>
<td>1.37 d</td>
<td>9.47</td>
</tr>
</tbody>
</table>

Keterangan: *) Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0.05 dengan uji Duncan.

**) Rata-rata dari daun bawah dan tengah.

Sumber: Rachman et al. (1993).

Tabel 4. Pengaruh pemupukan KCl pada padi yang dilakukan beberapa tahun terhadap kadar Cl daun tembakau virginia fc yang di tanam sesudah padi.

<table>
<thead>
<tr>
<th>Tahun pemban</th>
<th>Kadar Cl krosok (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertisol, Bojonegoro</td>
</tr>
<tr>
<td></td>
<td>Daun bawah</td>
</tr>
<tr>
<td>1988</td>
<td>1.11 a</td>
</tr>
<tr>
<td>1989</td>
<td>1.11 a</td>
</tr>
<tr>
<td>1990</td>
<td>1.16 a</td>
</tr>
</tbody>
</table>

Keterangan: *) Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0.05 dengan uji Duncan.

**) Kasaran pembaruan pupuk pada padi 0 - 200 kg KCl per ha.

Pada penelitian tersebut juga tidak dapat dibuktikan pengaruh susulan pemupukan KCl yang diberikan pada padi dari tahun ke tahun terhadap kadar Cl krosok tembakau virginia fc. Bahkan di Buleleng Bali pengaruh tersebut makin menurun (Tabel 4). Lahan tembakau di Buleleng diairi dengan air pengairan dari pegunungan yang dekat. Air tersebut sangat jernih, kurang mengandung walet, sehingga kemungkinan kadar Cl-nya juga rendah. Tanah di Buleleng juga mengandung liat yang lebih rendah dari pada tanah di Bojonegoro, yaitu 24,10 % liat, 27,30 % debu, dan 48,60 % pasir, atau bertekstur lempung liat berpasir, sehingga laju infiltetasinya lebih tinggi. Sedangkan tanah percoaban di Bojonegoro mengandung 80,4 % liat, 15,4 % debu, dan 4,2 % pasir.

Pengaruh beberapa teknik budidaya

Beberapa tindakan budidaya telah dicoba apakah dapat menurunkan kadar Cl daun tembakau, yaitu sistem tumpangsari dan peningkatan populasi tanam. Prinsip dari percobaan ini adalah persaingan antar tanaman terhadap serapan unsur Cl.

Hasil percobaan tumpangsari disajikan pada Tabel 5. Pada tabel tersebut terlihat bahwa tanaman tumpangsari jagung, sorgum, dan kacang hijau dapat menurunkan kadar Cl daun dengan nyata. Terutama tembakau yang bertumpangsari dengan jagung dan sorgum, kadar Cl daun untuk kaca posisi daun di bawah 1%. Tetapi hasil ini belum bisa direkomendasikan karena penanamannya terlalu rapat sehingga sangat menurunkan hasil. Tetapi dari segi mutu tidak ada masalah (Tabel 5).

Tabel 5. Pengaruh tanaman tumpangsari terhadap kadar Cl tembakau pada tanah Vertisol Bojonegoro.

<table>
<thead>
<tr>
<th>Jenis tanaman tumpangsari</th>
<th>Kadar Cl daun tembakau (%)</th>
<th>Hasil tembakau rajangan (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daun bawah</td>
<td>Daun tengah</td>
</tr>
<tr>
<td>Jilbab</td>
<td>1.22 b</td>
<td>1.26 b</td>
</tr>
<tr>
<td>Sun auf</td>
<td>0.95 a</td>
<td>0.88 a</td>
</tr>
<tr>
<td>Sorgum</td>
<td>0.77 a</td>
<td>0.71 a</td>
</tr>
<tr>
<td>Kacang hijau</td>
<td>0.94 a</td>
<td>1.09 a</td>
</tr>
<tr>
<td>Kacang daun</td>
<td>1.56 b</td>
<td>1.35 b</td>
</tr>
<tr>
<td>Kacang tanaman</td>
<td>1.53 b</td>
<td>1.23 b</td>
</tr>
</tbody>
</table>

Keterangan: *) Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0,05 dengan uji Duncan.

Hasil percobaan populasi tanaman disampaikan pada Tabel 6. Pada tabel tersebut terlihat bahwa peningkatan populasi sampai dengan 60.000 tanaman/ha tidak berpengaruh pada kadar Cl daun tembakau. Ini berarti bahwa peningkatan populasi sampai dengan 60.000 tanaman/ha belum dapat digunakan untuk usaha menurunkan kadar Cl tembakau, walaupun hasil tembakau virginia rajangan meningkat dengan
sangat nyata. Tetapi mutu tidak terpengaruh oleh peningkatan populasi tanaman.

Tabel 6. Pengaruh populasi tanaman terhadap kadar Cl daun tembakau pada tanah Vertisol Bojonegoro.

<table>
<thead>
<tr>
<th>Populasi tanaman (ribu tan/ha)</th>
<th>Kadar Cl daun tembakau (%)</th>
<th>Hasil tembakau (kg/ha)</th>
<th>Indeks mutu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daun bawah</td>
<td>Daun tengah</td>
<td>Daun atas</td>
</tr>
<tr>
<td>12</td>
<td>1,04 a</td>
<td>1,05 a</td>
<td>0,81 a</td>
</tr>
<tr>
<td>18</td>
<td>1,05 a</td>
<td>1,13 a</td>
<td>0,84 a</td>
</tr>
<tr>
<td>24</td>
<td>1,34 a</td>
<td>1,25 a</td>
<td>0,96 a</td>
</tr>
<tr>
<td>36</td>
<td>1,09 a</td>
<td>1,10 a</td>
<td>0,88 a</td>
</tr>
<tr>
<td>48</td>
<td>1,09 a</td>
<td>1,08 a</td>
<td>0,85 a</td>
</tr>
<tr>
<td>60</td>
<td>1,15 a</td>
<td>1,06 a</td>
<td>0,83 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0,05 dengan uji Duncan.

Tabel 7. Pengaruh bentuk olahan terhadap kadar Cl daun tembakau virginia pada tanah vertisol Bojonegoro.

<table>
<thead>
<tr>
<th>Bentuk olahan</th>
<th>Kadar Cl daun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daun bawah</td>
</tr>
<tr>
<td>Rajangan</td>
<td>1,08 a</td>
</tr>
<tr>
<td>Krosok</td>
<td>1,15 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama pada satu kolom tidak berbeda nyata pada taraf p. 0,05 dengan uji Duncan.

Blending tembakau

Dalam pembuatan suatu merk rokok diperlukan campuran berbagai jenis tembakau atau blending tembakau. Maksud dari blending tembakau adalah untuk mengurangi pengaruh negatif dari suatu jenis tembakau, seperti rasa tembakau Nicotiana rustica yang sangat tajam diturunkan dengan mencampur dengan jenis tembakau lain (Akehurst, 1981). Blending tembakau tidak ubahnya seperti orke s impion dimana rasa atau aroma dari masing-masing tembakau melebur menjadi satu menghasilkan rasa dan aroma baru sesuai selera konsumen (Fisher, 1999). Blending tembakau yang paling disukai secara universal adalah American Blend (Tabel 8). Walauupun pada masyarakat tertentu lebih menyukai rokok dari tembakau virginia murni (straight virginia blend cigarettes), sedang yang lain lebih menyukai oriental murni (straight oriental blend cigarettes).

Tabel 8. Susunan tembakau dari American Blend

<table>
<thead>
<tr>
<th>Tembakau</th>
<th>Kandungan %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Burley</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Oriental</td>
<td>3 – 15</td>
</tr>
<tr>
<td>Cut-rolled stem</td>
<td>3 – 10</td>
</tr>
<tr>
<td>Reconstituted</td>
<td>10 – 25</td>
</tr>
</tbody>
</table>

Total: 100

Menurut Serat (dari PT Djarum Kudus) tidak kurang dari 25 macam tembakau untuk membuat suatu merok rokok kretek tertentu. Sebagai gambaran kebutuhan tembakau untuk membuat rokok kretek di Indonesia seperti Tabel 10. Dari tabel tersebut terlihat kebutuhan tembakau virginia rajangan cukup berarti sebesar 12%. Sebagian besar tembakau virginia rajangan ini dihasilkan dari Bojonegoro. Ini berarti tembakau virginia rajangan cukup menentukan dalam pembuatan rokok kretek. Namun karena blending tembakau antara lain ditujukan untuk mengurangi pengaruh jelek dari jenis tembakau tertentu, diharapkan hal tersebut berlaku pula untuk tembakau rajangan dari Bojonegoro, walaupun masih perlu diupayakan agar kadar Cl tembakau virginia rajangan tidak melebihi 1%.

Pada tahun 1980, Direktur Tanaman Semusim (2001) telah melakukan penelitian tentang berkurangnya kandungan CI yang disebabkan oleh penggunaan pupuk klorida (Cl). Hasil penelitian menunjukkan bahwa kandungan CI dalam tanah dapat berkurang hingga 50% dalam waktu 6 bulan. Hal ini menunjukkan bahwa penggunaan pupuk klorida dapat mengurangi kandungan CI dalam tanah.

SARAN

1. Tidak melakukan pemupukan mengandung Cl langsung pada tanaman tembakau pada tanah Vertisol Bojonegoro.
2. Pemupukan KCl pada padi tidak boleh lebih dari 50 kg per ha. Sebaiknya pupuk KCl pada padi diganti pupuk kalium mengandung Cl rendah.
3. Perlu pemetaan kandungan CI air pengairan, air hujan, tanah dan daun tembakau dari daerah Bojonegoro.
4. Perlu diteliti pengaruh : angkutan panen, pupuk organik dan gypsum, unsur pengikat CI dan mineral alofan.

PUSTAKA

Perspektif Volume 2 Nomor 2, Desember 2003 : 56 - 66

Urea serta dosis N terhadap mutu tembikai besuki NO. Jurnal Penelitian Tanaman Industri. 6 (3) : 80-87.

