Tanah-tanah Dari Batuan Ultrabasik di Sulawesi: Kandungan Logam Berat dan Arahan Pengelolaan untuk Pertanian

Erna Suryani, Sofyan Ritung

Abstract


Abstrak Pemetaan tanah semidetail skala 1:50.000 mengidentifikasi sekurangnya 1.628.485 ha lahan di Sulawesi tanahnya berkembang dari batuan ultrabasik. Permasalahannya adalah tanah-tanah mengandung nikel (Ni) dan kromium (Cr) serta logam berat lainnya dalam konsentrasi tinggi. Kondisi ini dapat meracuni tanaman, yang pada akhirnya membahayakan kesehatan hewan dan manusia. Oleh karena itu sangat penting mengetahui kadar logam berat, terlebih potensi toksiknya terhadap tanaman, dan memberikan arahan pengelolaan untuk pertanian. Sebanyak enam profil terpilih yang berasal dari  Kolaka (Sulawesi Tenggara), Luwu Timur (Sulawesi Selatan) dan Morowali (Sulawesi Tengah) telah dideskripsi, dan 29 contoh tanah yang berasal dari 6 profil (HK-16, UY-16, SL-34, SL-09, RM-07 dan YY-09) telah dianalisis kandungan logam berat, mineralogi (komposisi mineral pasir dan liat), dan sifat kimia tanahnya. Hasil penelitian menunjukkan tanah yang berkembang dari batuan ultrabasik (peridotit dan serpentinit) telah mengalami pelapukan lanjut, ditunjukkan oleh warna tanah merah gelap/maron (hue 2.5YR -10R); mineral pasir didominasi oleh mineral resisten (opak, kuarsa, garnet, enstatit dan khlorit); mineral liat didominasi kaolinit dan goetit ditunjukkan pada puncak difraksi 7.3oA dan 4.15-4.16oA. Kesuburan tanah rendah sampai sangat rendah dicirikan oleh kandungan bahan organik, kadar P2O5 dan K2O potensial dan P-tersedia yang umumnya rendah sampai sangat rendah. Basa-basa dapat ditukar rendah, kecuali Mg2+. KTK-tanah dan KTK-liat rendah (< 16 cmol(+)/kg) sampai sangat rendah (< 5 cmol(+)kg-1). KTK-efektif (∑basa+Al-dd) > 1,5 cmol(+)/kg, kecuali profil YY-09 dan SL-34 mempunyai KTK efektif < 1,5 cmol(+)kg-1 mencirikan sifat acric. Konsentrasi Ni dan Cr sangat tinggi melebihi ambang batas yang ditetapkan (70 ppm untukNi dan 600-1000 ppm untuk Cr), masing-masing 670-1508 ppm dan 1230-1829 ppm.Konsentrasi boron (B) dan mangan (Mn) juga sangat tinggi, terutama pada profil SL-09. pH tanah 3,9-7,0 dan muatan koloid yang umumnya negatif, menyebabkan kelarutan Si lebih tinggi dari Cr, akibatnya kation-kation Ni terikat kuat pada permukaan partikel tanah, sehingga lebih mudah terserap dan dapat meracuni tanaman. Oleh karena itu saran pengelolaan tanah untuk menekan kelarutan Si adalah: 1) pemberian bahan organik, 2) pemberan kapur pertanian dalam bentuk CaCO3), dan 3) penanaman tanaman yang tidak dikonsumsi langsung, misal tanaman kehutanan.

Abstract. Semidetail soil mapping on a scale of 1:50,000 identifies at least 1,628,485 ha of soil in Sulawesi developed from ultrabasic rocks. The problem is the soils contain high concentrations of nickel (Ni), chromium (Cr) and other heavy metals, lead to toxic conditions for plants, and finally endangers animal and human health. Therefore it is very important to know the levels of heavy metals, especially their toxic potential for plants, and provide proper management direction for agriculture. Six selected profiles from Kolaka (Southeast Sulawesi), East Luwu (South Sulawesi) and Morowali (Central Sulawesi) have been described, and 29 soil samples from 6 profiles (HK-16, UY-16, SL-34, SL-09, RM-07 and YY-09) have analyzed for the content of heavy metals, mineralogy (mineral composition of sand and clay), and the chemical properties of the soil. The results showed that the soil developed from ultrabasic rocks (peridotite and serpentinite) had undergone further weathering, indicated by dark red/maroon (hue 2.5YR -10R). Sand minerals are dominated by resistant minerals (opaque, quartz, garnet, enstatite and chlorite); clay minerals dominated by kaolinite and goethite are shown in 7.3oA diffraction peaks and 4.15-4.16oA. Low to very low soil fertility is characterized by organic matter content, potential P2O5 and K2O and P-available levels which are generally low to very low. Exchangeable bases are low, except Mg++. Soil-CEC and clay-CEC are low (<16 cmol (+)/kg) to very low (<5 cmol (+) kg-1). Effective CEC (sum of  base + exchangeable-Al)> 1.5 cmol (+)/kg, except the YY-09 and SL-34 profiles characterizing the acric properties which have effective-CEC <1.5 cmol (+)kg-1. Very high Ni and Cr concentrations exceeded the safety threshold (70 ppm for Ni and 600-1000 ppm for Cr), 670-1508 ppm and 1230-1829 ppm respectively. The concentration of boron (B) and manganese (Mn) is also very high , especially on the SL-09 profile. Soil pH is 3.9-7.0 and colloidal charges are generally negative, causing Si solubility to be higher than Cr, as a result Ni cations are strongly bound to the surface of soil particles, making them more easily absorbed and poison plants. Therefore, suggestions for soil management to suppress Si solubility are: 1) giving organic matter, 2) planting agricultural lime in the form of CaCO3), and 3) planting crops that are not consumed directly, e.g. forestry crops.


Keywords


Batuan ultrabasic; logam berat; pengelolaan tanah; Sulawesi; Ultrabasic rock; heavy metal; soil management; Sulawesi

Full Text:

PDF (Indonesian)

References


Alloway, B.J.1990. Heavy metals in Soil. Blackie. Glasgow.

Anda, M. 2012. Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental composition of parent rocks. Geoderma 189-190, 388-396.

BBSDLP (Balai Besar Litbang Sumberdaya Lahan Pertanian). 2011. Laporan akhir tahun evaluasi potensi dan aktualisasi lahan mendukung ketahanan pangan dan antisipasi perubahan iklim di Provinsi Maluku, Maluku Utara, Sulteng, Sultra, Sulsel dan Sulbar. Dok. No. 39/LA/BBSDLP/2011. Balai Besar Litbang SDL Pertanian, Bogor.

BBSDLP (Balai Besar Litbang Sumberdaya Lahan Pertanian). 2012. Laporan akhir identifikasi dan evaluasi potensi SDL untuk pengembangan pertanian mendukung kawasan pengembangan komoditas tanaman pangan dan kakao di Sulawesi. Dok. No. 31/LA/BBSDLP/2012. Buku I: Naskah. Badan Litbang Pertanian, Bogor.

BBSDLP (Balai Besar Litbang Sumberdaya Lahan Pertanian). 2014. Laporan akhir identifikasi dan evaluasi potensi SDL pengembangan pertanian di Nusa Tenggara, Kalimantan, Sulawesi, dan Maluku. Dok. No. 24/LA/BBSDLP/2014. Badan Litbang Pertanian, Bogor.

Becquer, T., Quantin, C., Rotte-Capet, S., Chanbaja, J., Mustin, C., Hebillon, A.J., 2006. Sources of trace metals in Ferrasols in New Caledonia. European Journal of Soil Science 57, 200–213.

Bolt, G.H., M.G.M. Bruggenwert, and A. Komphorst, 1976. Adsorption of cation by soil. Dalam G.H. Bolt and M.G.M. Bruggenwert (Ed.), Soil Chemistry.A..Basic Elements, Elsevier Sci., Amsterdam,pp. 54-95.

Bonifacio, E., Zanini, E., Boero, V., Franchini-Angela, M., 1997. Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75, 33–51.

Buurman, P. 1990. Chemical, physical, and mineralogical characteristics for the soil data base. Technical Report No.7, Version 2.1. Land Resource Evaluation and Planning Project, Soil Data Base Management. Center for Soil and Agroclimate Research, Bogor.

Buurman, P., dan M. Soperaptohardjo. 1980. Oxisols and associated soils on ultramafic and felsic volcanic rocks in Indonesia. p 71-90. In Buurman P (Ed) Red Soils in Indonesia. Agric. Res. Report 889. Bulletin No.5. Soil Research Institute, Bogor.

Chen, Z.S., 1998. The management of contaminated soils remediation programmes.

Land Contamination and Reclamation 6, 223–237.

Eviati dan Sulaeman. 2012. Petunjuk Teknis Analsis Kimia Tanah, Tanaman, Air, dan Pupuk. Edisi 2. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.

Fox, J.E.D and T. H. Tan, 1971.Soils and forest on an ultrabasic hill, north-east of Ranau, Sabah. Journal of Tropical Geography, 32: 38-48.

Fox. R.L and E.J. Kamprath. 1970. Phosphate sorption isoterm for evaluating the phosphate requirement of soils. Soil Science Society of America Proceeding 34: 902-907.

Goff F., and Lackner 1998. Carbon dioxide sequestering using ultramafic rocks. Environmental Geosciences (1998) 5 (3): 89-101.

Graham, R.C., Diallo, M.M., Lund, L.J., 1990. Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California. Soil Science Society of America Journal 54, 1682–1690.

Herbillon, A.J. 1980. Mineralogy of oxisols and oxic materials. In B.K.G. Theng (Eds.). Soil with variable charge. Offset Publication. New Zealand. P. 109-146.

Hardjowigeno, S. 1993. Klasifikasi tanah dan pedogenesis. Akademika Pressindo. Jakarta

ICRCL. 1987. Guidance on the assessment and redevelopment of contaminated land. ICRCL 58/83 2nd edition. CDEP/EPTS. Departemen of Environment, London.

Lee, B.D., Graham, R.C., Laurent, T.E., Amrhein, C., 2004. Pedogenesis in wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma 118, 303–320.

McGrath, P.S.1995. Chromium and Nikel; In: Heavy metals in Soil 2 nd. Ed (Ed. Alloway, B.J.). Blackie.Academic & Professional, London.

McGroddy, M. E., W. L. Silver, R. C. de Oliveira Jr., W. Z. de Mello, and M. Keller. 2008. Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem, J. Geophys.

Mohr, E.C.J., F.A. Van Baren, dan J. Van Schuylenborgh. 1972. Tropical soils. A comperhensive study of their genesis. third edition. Mouton-Ichtiar Baru-Van Hoeve, The Hague, Paris, Jakarta.

Musta, B., and Md. Tan, M. 1996. Perlakukan beberapa unsur mayor dan unsur surih dalam profil Luluhawa batuan Basalt di Segamat Johor. Sains maysiana, Vol. 25 (1): 1-18.

Pramuji dan M. Bastaman. 2009. Teknik analisis mineral tanah untuk menduga cadangan sumber hara. Bulletin Teknik Pertanian 14 (2):80-82.

Prasetyo, B.H., A.M. Sudihardjo, dan J. Dai. 1988. Karakteristik mineralogi batuan ultrabasik di daerah Tompira, Sulawesi Tengah. Hal. 61-65. Dalam Kurnia et al. (Eds) Pros. Pertemuan Teknis Penelitian Tanah. Cipayung 18-20 Maret 1986. Pusat Penelitian Tanah, Badan Litbang Pertanian, Bogor.

Rowell, D.L. 1994. Soil Science:Methods and aplications. Longman Acientific and Tehnical. United Kingdom.

Rusmana, E., Sukido, Sukarna, D., Haryono, E. dan Simandjuntak, T.O. 1993. Peta Geologi Lembar Lasusua-Kendari, Sulawesi, skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Schwertmann, U. 1988. Some properties of soil and synthetic iron oxides. In Stuci, J.W., B.A. Goodman and U. Schwertmann (Eds). Iron in Soilsand Clay Minerals. NATO ASI Series. Series C: Mathematican and Physical Science. 127:203-250.

Shallari, S., Schwartz, C., Hasko, A., Morel, J.L., 1998. Heavy metals in soils and plants of serpentine and industrial sites of Albania. The Science of the Total Environment 209, 133–142.

Simandjuntak, T.O., E. Rusmana, Surono, dan J.B. Supandjono. 1991. Peta geologi lembar Malili, Sulawesi, skala 1:250.000. Puslitbang Geologi, Bandung.

Simandjuntak, T.O., Surono, dan Sukido. 1993. Peta geologi lembar Kolaka, Sulawesi, skala 1: 250.000. Puslitbang Geologi, Bandung.

Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th ed. USDA Natural Resources Conservation Service. Washington DC.

Subagyo, H., N. Suharta, dan A.B. Siswanto. 2000. Tanah-tanah pertanian di Indonesia. Hlm 21-66. Dalam Sumberdaya lahan Indonesia dan pengelolaannya. Pusat Penelitian Tanah dan Agroklimat Bogor.

Subardja, D., S. Ritung, M. Anda, Sukarman, E. Suryani, dan R.E. Subandiono. 2016. Petunjuk Teknis Klasifikasi Tanah Nasional. Edisi 1. Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Litbang Pertanian, Bogor. 45 hal.

Sudihardjo, A.M., dan J. Dai. 1989. Karakterisasi tanah-tanah merah berbahan induk ultrabasik menurut toposekuen di daerah Puriala, Sulawesi Tenggara. Hal. 149-155. Dalam Kurnia et al. (Eds) Pros. Pertemuan Teknis Penelitian Tanah. Bogor, 18-20 Juni 1987. Pusat Penelitian Tanah, Badan Litbang Pertanian, Bogor.

Suhardjo, H. 1988. Sekuen keadaan tanah di daerah batuan basis Sulawesi Tenggara. Hal. 97-104. Dalam Kurnia et al. (1988) Risalah Hasil Penelitian Tanah. Pusat Penelitian Tanah, Badan Litbang Pertanian, Bogor.

Sudihardjo, A.M., dan A.B. Siswanto. 1991. Genesa Humic Rhodic Haplustox dan Paleustollic Chromusterts berbahan induk peridotit pada sekuan tanah Trobulu, Sulawesi Tenggara. Hal. 29-39. Dalam Kurnia et al. (Eds) Pros. Pertemuan Teknis Penelitian Tanah. Pusat Penelitian Tanah, Bogor.

Suharta, N., M. Soekardi, dan B.H. Prasetyo. 1995. Karakterisasi tanah Oxisols sebagai dasar pengelolaan lahan: studi kasus pada Oxisols di Sanggauledo, Kalimantan Barat. Pemberitaan Penelitian Tanah dan Pupuk 13:9-20.

Tan, K.H. 1992. Principles of Soil Chemistry. Marcel Dekker, Inc. 270 Madison Avenue, New York.

Tufaila, M., B.H. Sunarminto, D. Siddieq, and A. Syukur. 2011. Characteristics of soil derived from ultramafic rocks for extensification of oil palm in Langgikima, North Konawe, Southeast Sulawesi. AGRIVITA J. 33 (1):93-102.

Wild, A. 1993. Soil and the environment: An introduction. Cambridge University Press.

Wilson, M.J., 2004. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals 39, 233–266.




DOI: http://dx.doi.org/10.21082/jti.v42n2.2018.111-124

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Tanah dan Iklim

 Sertifikat Akreditasi JTI (2021)

 

  

 

 

P-ISSN : 1410-7244

E-ISSN : 2722-7723

Alamat:

Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Jl. Tentara Pelajar No. 12 Bogor 16124

Telf. (0251) 8323012

Fax. (0251) 8311256

(Stat Kunjungan [Sejak 11 Des 2016])