Pengaruh Aplikasi Trichoderma spp. Indigenous terhadap Hasil Padi Varietas Junjuang Menggunakan System of Rice Intensification

Nelson Elita, Harmailis Harmailis, Rita Erlinda, Eka Susila

Abstract


Abstrak. Mikroba telah banyak digunakan untuk meningkatkan hasil padi dengan System of Rice Intensification (SRI). Namun peningkatan produksi padi SRI menggunakan jamur Trichoderma spp. indigenous belum diketahui. Penelitian ini bertujuan untuk mengevaluasi pengaruh isolat jamur Trichoderma spp. indigenous yang diisolasi dari berbagai varietas padi terhadap peningkatan hasil padi varietas Junjuang dengan metode SRI. Penelitian ini menggunakan Rancangan Acak Lengkap dengan enam jenis isolat Trichoderma spp. indigenous, satu kontrol dan tiga ulangan. Perlakuan: T0 = Kontrol (tanpa isolat Trichoderma spp.), T1 sampai T6 berturut-turut adalah isolat jamur Trichoderma spp. indigenous, diekstrak dari rhizosfer padi varietas Kuning Kurik, Pandan Wangi, Junjuang, Silih Baganti, Ketan Merah, dan Sokan. Hasil penelitian menunjukkan bahwa aplikasi isolat jamur Trichoderma spp. indigenous nyata meningkatkan tinggi tanaman dan jumlah anakan padi dibandingkan dengan kontrol. Aplikasi isolat Trichoderma spp. indigenous meningkatkan jumlah gabah per malai antara 52 sampai 110% dibandingkan T0 dan tertinggi pada T3. Persentase gabah hampa terrendah pada T3 (5%) dan tertinggi  pada T0 adalah (32%). Berat gabah kering per pot tertinggi pada T3 (98,2 g) dan nyata lebih tinggi dibandingkan pada T0 (58,4 g). Berat 1.000 biji tertinggi pada T3 (20,7 g) dan terendah pada T0 (17,9 g). Penelitian ini menyimpulkan bahwa isolat Trichoderma spp. indigenous dari rhizosfer varietas Junjuang (T3) memberikan pengaruh tertinggi terhadap peningkatan hasil padi varietas Junjuang dengan metode SRI. Terdapat kesesuaian isolat Trichoderma spp. indigenous dari rhizosfer varietas Junjuang dengan tanaman inangnya sehingga isolat tersebut meningkatkan pertumbuhan dan produksi tanaman.

Abstract. Microbes has been widely used for increasing rice yield under the System of Rice Intensification (SRI). However, the increase in SRI rice yield using indigenous Trichoderma spp. fungus is not yet known. This study aimed to evaluate the effect of indigenous Trichoderma spp. isolated from the rizosphere of various rice varieties on the yield of Junjuang rice varieties under the SRI. This study used a completely randomized design with six types of indigenous Trichoderma spp. isolates, one control and three replications. Treatment: T0 = Control (without Trichoderma spp. isolate), T1 to T6 were indigenous Trichoderma spp. isolated from rice rhizosphere of varieties Yellow Kurik, Pandan Wangi, Junjuang, Silih Baganti, Red Sticky Rice, and Sokan, respectively. The results showed that the effects of indigenous Trichoderma spp. application on plant height and number of tillers were significantly higher than those of control. Application of indigenous Trichoderma spp. isolates increased the number of grain per panicle 52 to 110% compared to T0,  and the highest was at T3. The lowest percentage of empty unhulled rice was at T3 (5%) while that of T0 was 32%. The highest dry grain weight per pot at T3 was 98.2 g, and was significantly higher than that of  T0 (58.4 g). The highest weight of 1.000 seeds was at T3 (20.7 g) and the lowest was at T0 (17.9 g). This study concludes that indigenous Trichoderma spp. of the Junjuang (T3) variety rhizosphere gave the greatest effect on increasing the yield of Junjuang rice varieties under the SRI. There seems to be a suitability of indigenous Trichoderma spp. isolates extracted from the rhizosphere of the Junjuang rice variety with its host plant such that the isolate increased the crop growth and yield.


Keywords


Indigenous; Junjuang; System of Rice Intensification; Trichoderma spp.

Full Text:

PDF (Indonesian)

References


Amira RD, Roshanida AR, Rosli MI, Zahrah MSF, Anuar JM, Adha CN. 2011. Bioconversion of empty fruit bunches (EFB) and palmoilmill effluent (POME) into compost using Trichoderma virens. Afr. J. Biotechnol. 10:18775-18780.

Brotman Y, Lisec J, M´eret M Ilan Chet, Lothar Willmitzer, Ada Viterbo. 2012. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology. Journal: Microbiology. 158:139-146.

Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W. 2013. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum Plant Physiol. Bioch. 73:106-113.

Cai F, Chen W, Wei Z, Pang G, Li R, Ran W, Shen Q. 2015. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil. 388:337-350.

Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. 2015. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant-Microbe Interact. 28:1049-1058.

Contreras-Cornejo HA, Macı´as-Rodrı´guez L, Cortés Penagos C, López-Bucio J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149:1579-1592.

Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara- García ÁA, López-Bucio J. 2015a. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis rootsystem architecture alterations by Trichoderma atroviride. Mol. Plant-Microbe Interact. 28:701-710.

Contreras-Cornejo HA, Macías-Rodríguez L, Vergara AG, López-Bucio J. 2015b. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J. Plant Growth Regul. 34: 425–432.

Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A. 2016. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biology and Fertility of Soils. 52:5-29.

Elita N, Susila E, Yefriwati. 2018. The potential types of indigenous arbuscular mycorrhizal fungi as sources of inoculum and their effect on rice production using the system of rice intensification method. Pakistan Journal of Nutrition. 17(12):696-701.

Erlinda R, Elita N, Susiawan E. 2019. Pemanfaatan pupuk bioorganik plus untuk meningkatkan produksi padi metode SRI. Journal of Applied Agricultural Science and Technology. 3(1):57-66.

Erlinda R, Elita N, Agustamar. 2020. The effect of indigenous Azotobacter isolate on rice results of SRI and land quality methods. International Journal of Advanced Research. 8(01):185-193.

Elita N, Erlinda R, Agustamar. 2020. The effect of bioorganic dosage with N, P fertilizer on rice production of SRI methods and increased nutrient content of paddy soil intensification. Journal of Applied Agricultural Science and Technology. 4(2): 155-169.

Gathome-Hardy A, Reddy DN, Venkatanarayana M, White BH. 2016. System of rice intensification provides environmental and economic gains but at the expense of social sustainability - A multidisciplinary analysis in India. Agriculture System. 143:159-168.

Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J. 2016. The volatile 6-pentyl-2H-pyran-2- one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytol. 209:1496-1512.

Hidayati N, Triadiati, Anas I. 2016. Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield. Hayati Journal of Biosciences. 23:67-72.

Hock O, Subramaniam G, Abdullah FB. 2014. Effect of Trichoderma-infused compost on yield of chili plants. Presented at International Conference on Advances in Environment, Agriculture & Medical Sciences (Icaeam’14) 16-17.

Kusuma ME, Kastalani, Kristina. 2019. Efektifitas pemberian kompos Trichoderma terhadap pertumbuhan dan produksi rumput Brachiaria Humidicola di lahan gambut. Ziraa’ah. 44(1): 20-27.

Martínez MA, Alguacil M, Pascual JA, Van Wees SCM. 2014. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth‐promoting activity on Melon plants. Journal of Chemical Ecology. 40:804-815.

Made I, Setyadi D, Artha IN, Wirya GNAS. 2017. Efektifitas pemberian kompos Trichoderma sp. terhadap pertumbuhan tanaman cabai (Capsicum Annum L.). E-Jurnal Agroekoteknologi Tropika. 6(1):21-30.

PPT. Pusat Penelitian Tanah. 1995. Petunjuk teknis evaluasi kesuburan tanah. Laporan Teknis. Versi 1,0.1. REP II Project, CSAR, Bogor.

Syahputra MH, Anhar A, Irdawati. 2017. Isolasi Trichoderma spp. dari beberapa rizosfer tanaman padi asal Solok (Isolation Trichoderma spp. from some rizosphere rice plants Solok). Journal Biosains. 1(2):97-105.

Siddiquee S, Shafawati SN, Naher L. 2017. Effective composting of empty fruit bunches using potential Trichoderma strains. Biotechnol. Rep. 13:1-7.

Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E. 2012. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiol. 158:129-138.

Sani MNH, Hasan M, Uddain Jasim, Subramaniam S. 2020. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annals of Agricultural Sciences. 65:107-115

Thakur AK, Uphoff NT, Stoop WA. 2016. Chapter four - scientific underpinnings of the system of rice intensification (SRI): What is known so far? Advances in Agronomy. 135:147-179.

Uphoff N, Fasoula V, Iswandi A, Kassam A, Thakur AK. 2015. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding. The Crop Journal. 3:174-189.

Wahyuni SH. 2018. Potensi Trichoderma viride dalam menekan serangan Sclerotium Rolfsii pada tanaman kedelai (Glycine Max L.). Jurnal Agrotek Lestari. 5(1):51-57.

Wahyuni SH, Nasution DPY. 2019. Utilization of Trichoderma viride as organic fertilizer to induce the resistance of banana seeds on Fusarium oxysporum f.sp cubense (FOC). IOP Conf. Series: Earth and Environmental Science. 260:1-6.

Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti E, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M. 2013. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol. Letters. 347:123-129.

Yudha MK, Soesanto L, Mugiastuti E. 2016. Pemanfaatan empat isolat Trichoderma sp. untuk mengendalikan penyakit akar gada pada tanaman caisin. Jurnal Kultivasi. 15(3):143-149.

Yuan H, Zhu Z, Liu S, Ge T, Jing H, Li B, Liu Q, Lynn TM, Wu J, Kuzyakov Y. 2016. Microbial utilization of rice root exudates: 13 C labeling and PLFA composition. Biol. Fert. Soils. 52:615-627.

Zen S, Aziz SA, Yufdy P. 2011. Varietas unggul lokal padi sawah dengan rasa pera spesifik Sumatera Barat. Balai Pengkajian Teknologi Pertanian Sumatera Barat.

Zin NA, Badaluddin NA. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences. 65:168-178.




DOI: http://dx.doi.org/10.21082/jti.v45n1.2021.79-89

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Tanah dan Iklim

 Sertifikat Akreditasi JTI (2021)

 

  

 

 

P-ISSN : 1410-7244

E-ISSN : 2722-7723

Alamat:

Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Jl. Tentara Pelajar No. 12 Bogor 16124

Telf. (0251) 8323012

Fax. (0251) 8311256

(Stat Kunjungan [Sejak 11 Des 2016])