KERAGAMAN GENETIK BEBERAPA ISOLAT Phytophthora palmivora PENYEBAB PENYAKIT GUGUR BUAH PADA KELAPA BERDASARKAN PENANDA RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD)

HASINTA F. J. MOTULO, MEITY S. SINAGA, SIENTJE MANDANG dan ARIS TIAHOLEKSONO

1) Balai Penelitian Tanaman Kelapa dan Palma Lain
2) Departemen Hama dan Penyakit, Fakultas Pertanian, Institut Pertanian Bogor
3) Departemen Biologi, FMIPA, Institut Pertanian Bogor

ABSTRAK

Kata kunci: Kelapa, Cocos nucifera, Phytophthora palmivora, keragaman genetik, RAPD

PENDAHULUAN

Penyakit gugur buah merupakan salah satu penyakit yang menyebabkan kerugian yang sangat besar pada tanaman kelapa. Tanaman yang terserang penyakit ini akan mengakibatkan buah berumur 4-6 bulan gugur sebelum waktu panen. Di Indonesia penyakit ini telah mengakibatkan masalah pada 24 populasi tanaman kelapa, di antaranya populasi Dalam Tenga (DTA), Dalam Palu (DPU), Dalam Bali (DBI), Dalam Sawarna (DSA), West African Tall (WAT), Genjah Kuning Nias (GKN), Genjah Hijau Nias (GHN), Genjah Jambong (GJ), Genjah Raja (GRA), Genjah Salak (GSK), Genjah Tebing Tinggi (GTI), PB-121, NIWA, Genjah Merah Malaysia (GMM), KHINA-1, KHINA-2, dan KHINA-3. Kehilangan hasil yang disebabkan oleh penyakit gugur buah pada populasi GKN di kebun koleksi Mapanget sebesar 23.6-50% (MANGINDAAN et al., 1992). FRANQUEVILLE dan KOUASSI (1992) melaporkan bahwa kehilangan hasil akibat penyakit gugur buah di Côte d'Ivoire mencapai 30-40%.

Random Amplified Polymorphic DNA (RAPD) merupakan salah satu penanda molekuler yang bermanfaat untuk mempelajari keragaman genetik. Dasar analisis RAPD adalah penggunaan mesin Polymerase Chain Reaction (PCR) yang mampu mengamplifikasi sekuen DNA secara in vitro. Menurut DEMIEKE dan ADAMS (1994), prosedur RAPD relatif lebih sederhana dan mudah dalam preparasinya dibandingkan dengan RFLP. Selain itu sampel DNA yang diperlukan lebih sedikit (0,5-50 mg) dan tidak memerlukan radioisotop. Oleh karena itu teknik ini banyak digunakan untuk mempelajari hubungan kekerabatan dari suatu organisme (GUTHRIE et al., 1992), mengidentifikasi penanda gen Phytophthora sp. yang tidak peka terhadap fungisida metalaksil (FABRITIUS et al., 1997) dan identifikasi penanda yang berhubungan dengan ketahanan penyakit (OLAYA et al., 1996). Berdasarkan hal di atas maka dilakukan percobaan ini untuk mengetahui keragaman genetik antara isolat-isolat P. palmivora.
BAHAN DAN METODE

Penelitian dilaksanakan di Laboratorium Biologi Tumbuhan, Pusat Studi Ilmu Hayat Institut Pertanian Bogor, berlangsung dari Februari sampai September 1999. Enam belas isolat P. palmivora yang dikoleksi oleh Balai Penelitian Tanaman Kelapa dan Palma Lain, Manado yang telah disimpan dalam media agar V8 pada suhu 4°C digunakan dalam penelitian ini. Deskripsi mengenai keenam belas isolat ditampilkan pada Tabel 1. Masa selisim yang digunakan dalam ekstraksi DNA diperoleh dengan menumbuhkan dalam 30 ml medium V8 cair dalam erlenmeyer.

Isolasi DNA dilakukan menurut metode SAMBROOK et al. (1989) dengan sedikit modifikasi. Sebanyak 2 g masa selisim uang sudah dibilas dengan air steril ditambah dengan nitrogen cair dimasukkan ke dalam mortar dan digerus. Serbuk selisim dipindahkan ke dalam tabung reaksi yang telah berisi 5 ml larutan penyanga (1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl, pH 8,0, 2% (w/v) CTAB, 0.2% β-mercaptoethanol). Campuran dikocok sampai homogen dan diinkubasi pada suhu 65°C selama 30 menit, kemudian ditambahkan 1 volume chloroform dan disentrifues pada 4000 rpm selama 5 menit. Fase cair yang terpisah diambil dan dipindahkan ke tabung baru kemudian ditambahkan 0,8 volume isopropanol. Selanjutnya tabung diinkubasi selama 30 menit dan disentrifues pada 4000 rpm selama 5 menit. Larutan dibuang dan pelet DNA dikeringkan pada suhu 70°C. Setelah ditambahkan 0,5 ml Tris-EDTA (1x) dan 2 mg/ml RNAs, larutan DNA dikocok dan satu volume phenol ditambahkan dan disentrifues pada 4000 rpm selama 5 menit. Lapisan atas diambil dan dipindahkan pada tabung ependorf baru. Selanjutnya ditambahkan 0,1 volume sodium asetat dan 0,8 volume dikocok perlahan dan diinkubasi selama 37°C selama satu jam. Setelah itu ditambahkan 0,5 ml Tris-EDTA (1x) isopropanol. Suspensi diinkubasi selama 10 menit kemudian disentrifues pada 11000 rpm selama 10 menit. Larutan dibuang dan pelet DNA dikeringkan. Selanjutnya ditambahkan etanol diringin 70% dan disentrifues pada 11 000 rpm selama 5 menit. Etanol dibuang dan pelet DNA dikeringkan pada suhu 37°C selama 30 menit. Pelet DNA dilarutkan dalam Tris-EDTA pada suhu ruang lalu disimpan pada suhu -20°C. Perhitungan kemurnian dan konsentrasi DNA dilakukan menurut SAMBROOK et al., (1989).

DNA hasil ekstraksi setiap isolat diamplifikasi dalam mesin PCR dengan menggunakan masing-masing sembilan primer acak dari Operon Alameda Tech., yaitu OA-02, OA-07, OA-08, OA-10, OA-16, OA-20, OB-1, OB-5 dan OB-12. Komposisi reaksi PCR ialah 1 x larutan penyanga reaksi (50M KCl, 10M Tris-HCL pH 8,8, 0,01% Triton X-200), 200 μM dNTP, 2,5 mM MgCl₂, 5 μM primer, 1 unit Tag DNA polymerase (Promega Co., Madison), 50 ng DNA genom, dan air suling ditambahkan sampai mencapai volume akhir 40μl.

Amplifikasi DNA dilakukan dalam mesin PCR (Perkin Elmer Gene Amp. System 2400) dengan kondisi reaksi pra PCR 5 menit 94°C, denaturasi 1 menit 94°C, penempelan 1 menit 37°C, pemanasan 2 menit 72°C dan pasca PCR 5 menit 72°C Fragment DNA hasil amplifikasi untuk setiap primer ditambah dengan 3μl bahan penanda 0,25% Bromophenol Blue dan 40% w/v sukrosa dipisahkan dari elektrophoresis pada gel agarose 1% dan dianuktuk dengan pewarnaan melalui perendaman dalam 0,5 μg/ml larutan etidium bromida selama 30 men kemudian dibals dan direndam dengan H2O selama 30 men. Pita DNA hasil amplifikasi diamati di atas transliminator UT dan dianuktuk dengan pemotretan dengan menggunakan alat Gel UV dokumentasi. Berdasarkan adanya atau tidak adanya pita RAPD dapat dibedakan dari pita hasil amplifikasi DNA pada posisi (ukuran) pita yang sama. Data hasil RAPD dari masing-masing isolat dianalisis dengan sidik gerombel (Cluster analysis) pada program computer Numerical Taxonomy System (NTSYS-pc) dan selanjutnya ditentukan pohon filogenetiknya.

HASIL DAN PEMBAHASAN

Profil Pita DNA

Pengamatan terhadap profil pita RAPD yang dihasilkan oleh sembilan primer menunjukkan bahwa sebagian besar isolat P. palmivora dapat diamplifikasi DNA nya. Jumlah pita DNA hasil amplifikasi yang

Hasil analisis diperoleh 87 pita DNA, 83 pita DNA atau 95.4% pita di antaranya merupakan pita polimorfis. Semakin banyak pita polimorfis, semakin banyak pula situs penempel primer yang penyebabnya beragam. Di antara sembilan primer terdapat primer OB-01 yang hanya menghasilkan dua pita DNA yang polimorfis. Sedikitnya jumlah pita DNA hasil amplifikasi oleh primer OB-01 menunjukkan bahwa hanya sedikit jumlah situs pada genom P. palmivora yang homolog dengan primer OB-01. Oleh karena itu primer tersebut tidak dianjurkan untuk menganalisis keragaman genetik dari P. palmivora.

Tabel 2. Jenis primer dan jumlah pita DNA hasil amplifikasi dari 16 isolat P. palmivora

<table>
<thead>
<tr>
<th>Primer</th>
<th>Susunan basa</th>
<th>Total pita</th>
<th>Pita polimorfis</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA-02</td>
<td>TGCGAGACTG</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>OA-07</td>
<td>GAAACGGGGTG</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>OA-08</td>
<td>GTGACGCTAGG</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>OA-10</td>
<td>GTGATGGGAG</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>OA-16</td>
<td>AGCCAGCGAA</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>OA-20</td>
<td>GTTCCGATCC</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>OB-01</td>
<td>GTTCGCTCG</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>OB-05</td>
<td>TGCGCCCTTC</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>OB-12</td>
<td>CCTTGACGCA</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

| Total | 87 | 83 |

Persentase pita polimorfis 95.4%

Perbedaan jumlah dan ukuran profil pita DNA ditampilkan pada Gambar 1. Jumlah dan ukuran profil DNA sangat berperan dalam menentukan tingkat keragaman P. palmivora. Terlihat pada Gambar 1 jumlah dan ukuran pita DNA hasil amplifikasi menggunakan primer OA-10, OA-16 dan OA-20 menunjukkan bahwa setiap primer memiliki jumlah dan ukuran pita yang beragam.

Keragaman Genetik antar Isolat P. palmivora

Hasil analisis keragaman genetik dari isolat-isolat P. palmivora menunjukkan ragam genetik yang tinggi mencapai 40.6% (Gambar 2). Perbedaan genetik tertinggi terjadi pada isolat 93P54 dari Sumatera Barat. Sedangkan perbedaan genetik terendah sebesar 2% yaitu antara isolat yang berasal dari Pakuwon Jawa Barat (Isolat PKW dan 99P01). Isolat-isolat P. palmivora yang berasosiasi dengan penyakit gugur buah pada tingkat kesamaan genetik 80% terbagi dalam 12 kelompok RAPD. Kelompok I terdiri dari isolat 93P25 Lampung, 94P20 Sumatera Barat, dan 93P104 Tumaluntung (Sulut), kelompok II terdiri dari isolat 93P45 Aceh, PKW Pakuwon dan 99P01 Pakuwon sedangkan kedelapan kelompok isolat lainnya adalah isolat 91P81 Gorontalo, 94P72 Tanawangko (Sulut), 93P34 Paniki (Sulut), 93P25 Lampung, 93P39 Tinawangko (Sulut), 93P45 Boyongatas (Sulut), 92P186 Paniki (Sulut), 92P276 Koka (Sulut), 94P23 Sumatera Barat dan 93P106 Koka (Sulut). Banyaknya jumlah kelompok semakin menegaskan bahwa hubungan kekerabatan antara isolat-isolat yang dijui sangat beragam. Dari data pengelompokan tersebut menunjukkan bahwa beberapa isolat yang berasal dari Paniki (Sulawesi Utara) seperti isolat 92P186 dan 93P34 mempunyai kesamaan genetik berada pada tingkat kesamaan genetik 65%. Demikian pula isolat 92P276 dan 93P106 dari

Gambar 1. Profil pita DNA Beberapa isolat P. palmivora: M = Marker 1 kb, 1-4 = primer OA-10, 5-8 = primer OA-16, 9-15 = primer OA-20

Gambar 2. Dendogram kesamaan genetik 16 isolat P. palmivora

Figure 1. Profile of DNA bands of some P. palmivora isolates: M = Marker 1 kb, 1-4 = primer OA-10, 5-8 = primer OA-16, 9-15 = primer OA-20

Figure 2. Genetic similarity dendrogram of 16 isolates of P. palmivora

Meskipun letak geografis asal isolat berubah bisa terjadi diantar isolat mempunyai kesamaan genetik yang sangat tinggi. Hal ini dapat dilihat dari isolat 94P20 yang berasal dari dan Sumatera Barat dan isolat 93P104 dari Tumaluntung Sulawesi Utara, dimana nilai kesamaan genetiknya adalah 89.7%. Hal ini memungkinkan bahwa terdapat populasi _P. palmivora_ yang sama di daerah Sumatera Barat dan Sulawesi Utara, atau kemungkinan terjadi migrasi patogen melalui buah kelapa, tanah, ataupun bibit.

KESIMPULAN

Keragaman antar isolat _P. palmivora_ yang berasosiasi dengan penyakit gugur buah di Indonesia sangat tinggi yaitu 40.6%. Terdapat 12 kelompok RAPD berdasarkan analisis pengelompokan, dimana kelompok I tediri dari 3 isolat, kelompok II terdiri dari 3 isolat dan 10 isolat lainnya masing-masing mengelompok sendiri. Isolat yang berasal dari lokasi yang berdekatan ataupun sama tidak selalu menunjukkan hubungan kekerabatan yang dekat sebaliknya isolat yang berasal dari lokasi yang berjauhan tidak selalu menunjukkan hubungan kekerabatan yang jauh.

UCAPAN TERIMA KASIH

Saya mengucapkan terima kasih kepada DR. Alex Hartana yang telah mengikutsertakan saya dalam Proyek Hibah Tim Penelitian Pasca Sarjana (URGE) No. 038/ADD/I/HTTP/URGE/1997, juga kepada DR. Semuel Runtuwenu dan Bapak Pras Sutijono, atas bantuaninya di laboratorium.

DAFTAR PUSTAKA

