POTENSI BEBERAPA MIKROBA PEMACU PERTUMBUHAN TANAMAN SEBAGAI BAHAN AKTIF PUPUK DAN PESTISIDA HAYATI

Hanudin Hanudin, Kurniawan Budiarto, Budi Marwoto

Abstract


Consumer demands on safe agricultural products have made the shifting of the production system to be more environmental friendly. An attempt to reduce or totally substitute chemical fertilizers and pesticides on agricultural production process was through the utilization of potential microbes. The purpose of the study was to provide information on potential microbial species that can be used as active ingredients of biofertilizers and biopesticides. The mechanisms of action have been studied, both directly and indirectly, in protecting the plant from pest and disease attacks. Several of these microbes also functioned as decomposer that might improve soil characteristic and nutrient availability for the crops. The Indonesian Agency for Agricultural Research and Development for has released formulated biopesticides and bio fertilizers with the active ingredients isolated from agricultural production centers. The application of these biopesticides and biofertilizers have been effectively controlled important diseases in horticultural crops, i.e. Bio Nutri-V could suppress white rust disease (Puccinia horina Henn) 32.15% in chrysanthemum and increased 25% and 34% harvestable products in chrysanthemum and potato, respectively, compared with synthetic fungicide. The utilization of biopesticides and biofertilizers is expected to improve the competitiveness of national agricultural commodities by utilizing natural resources to support highly competitive and sustainable agricultural industries.

Keywords: Microbes, biofertilizer, biopesticide, vegetable, ornamentals, horticulture.

 

Abstrak

Tuntutan konsumen terhadap keamanan produk pertanian menuntut pula perlunya proses produksi dilakukan secara ramah lingkungan. Salah satu upaya untuk mengurangi atau mensubstitusi penggunaan pupuk dan pestisida kimia sintetik ialah memanfaatkan mikroba. Makalah ini membahas spesies mikroba yang berpotensi dan dapat dijadikan sebagai bahan aktif pupuk dan pestisida hayati. Berbagai spesies mikroba dari kelompok cendawan dan bakteri telah berhasil diisolasi dan dievaluasi keefektifannya sebagai bahan aktif pupuk dan pestisida hayati yang efektif. Mikroba pemacu pertumbuhan tanaman dengan mekanisme langsung maupun tidak langsung mampu menginduksi pertumbuhan tanaman dan beberapa mikroba juga berfungsi sebagai dekomposer, sehingga membantu penyediaan unsur hara bagi tanaman. Badan Litbang Pertanian telah menghasilkan beberapa formulasi pupuk hayati dan biopestisida dengan bahan aktif mikrobe yang diisolasi dari sentra produksi pertanian. Aplikasi pupuk dan pestisida hayati tersebut efektif mengendalikan penyakit penting tanaman hias, seperti Bio Nutri- V dapat menekan perkembangan penyakit karat putih (Puccinia horina Henn) pada krisan 32,2% dan mempertahankan hasil panen kentang dan krisan masing-masing 25% dan 34% dibandingkan dengan aplikasi fungisida kimia sintetik. Pengembangan pupuk dan pestisida hayati yang dihasilkan diharapkan dapat meningkatkan daya saing komoditas pertanian melalui sistem produksi ramah lingkungan dengan memanfaatkan sumber daya alam secara optimal guna mendukung industri pertanian berdaya saing dan berkelanjutan.

Kata kunci: Mikroba, pupuk hayati, biopestisida, sayuran, tanaman hias, hortikultura.


Keywords


Microbes;biofertilizer;biopesticide;vegetable;ornamentals;horticulture;Mikroba;pupuk hayati;biopestisida;sayuran;tanaman hias;hortikultura

Full Text:

PDF

References


Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

Ahmad, F., Ahmad, I., and M.S. Khan. 2008. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173– 181. https://doi.org/10.1016/j.micres.2006.04.001

Aktar, W., D. Sengupta, and A. Chowdhury. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/ 10.2478/v10102-009-0001-7

Al-Zaidi, A.A., E.A. Elhag, S.H. Al-Otaibi, and M.B. Baig. 2011. Negative effects of pesticides on the environment and the farmers awareness in saudi arabia: A case study. Journal of Animal and Plant Sciences, 21(3): 605–611.

Almario, J., D. Muller, G. Défago, and Y. Moënne-Loccoz. 2014. Rhizosphere ecology and phytoprotection in soils naturally suppressive to thielaviopsis black root rot of tobacco. Environmental Microbiology, 16(7): 1949–1960. https:// doi.org/10.1111/1462-2920.12459

Alori, E. T., B.R. Glick, and O.O. Babalola. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers In Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971

Ashwini, N., and S. Srividya. 2014. Potentiality of Bacillus Subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides Ogc1. 3 Biotech, 4(2), 127–136. https://doi.org/10.1007/s13205-013-0134-4

Attia, M., N.M. Awad, A.S. Turky, and H. A. Hamed. 2017. Induction of defense responses in soybean plants against Macrophomina phaseolina by some strains of plant growth promoting rhizobacteria. Journal of Applied Sciences Research, 7(11): 1507–1517.

Bale, J. S., J.C. Van Lenteren, and F. Bigler. 2008. Biological control and sustainable food production. Philosophical Transactions of The Royal Society B: Biological Sciences, 363(1492): 761–776. https://doi.org/10.1098/rstb.2007.2182

Bautista-Rosales, P. U., M. Calderon-Santoyo, R. Servín-Villegas, N.A. Ochoa-Álvarez, R. Vázquez-Juárez, and J. A. Ragazzo-Sánchez. 2014. Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Protection, 65: 194–201. https://doi.org/10.1016/j.cropro. 2014.07.019

Bhardwaj, D., M.W. Ansari, R.K. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 66. https://doi.org/10.1186/1475-2859-13-66

Bhattacharjee, R., and U. Dey. 2014. An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. African Journal of Microbiology Research, 8(17), 1749–1762. https://doi.org/10.5897/ajmr2013.6356

Bhattacharyya, P. N., and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4): 1327–1350. https://doi.org/10.1007/s11274-011-0979-9.

Candra Putra dan Giyanto. 2016. Kompatibilitas Bacillus spp. dan Aktinomiset Sebagai Agens Hayati Xanthomonas Oryzae pv. oryzae dan Pemacu Pertumbuhan Padi. Jurnal Fitopatologi Indonesia. 10(5): 160169. DOI: 10.14692/j?.10.5.160

Carvalho, D. D. C., M. Lobo Júnior, I. Martins, P.W. Inglis, and A.C.M. Mello. 2014. Biological control of Fusarium oxysporum f.sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Tropical Plant Pathology, 39(5): 384–391. https://doi.org/10.159/s1982-56762014000500005

Chen, Y., F. Yan, Y. Chai, H. Liu, R. Kolter, R. Losick, and J. Guo. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3): 848–864. https://doi.org/10.1111/j.1462-2929.2012. 02860.x.

Choure, K., and R.C. Dubey. 2012. Development of plant growth promoting microbial consortium based on interaction studies to reduce wilt incidence in Cajanus cajan L. var. Manak. World Journal of Agricultural Sciences, 8(1): 118–128. https://doi.org/10.5829/idosi.mejsr.2012.12.11.7

Cicu. 2006. Penyakit akar gada (Plasmodiophora brassicae Wor.) pada kubis-kubisan dan upaya pengendaliannya. Jurnal Penelitiandan Pengembangan Pertanian, 25(25): 16–21.

Colyer, P. D., and M.S. Mount. 1984. bacterization of potatoes with Pseudomonas putida and its influence on postharvest soft rot disease. Plant Disease, 68: 703–706.

Compant, S., B. Reiter, J. Nowak, A. Sessitsch, C. Clément, and E.A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PJSN. Applied and Environmental Microbiology, 71(4): 1685–1693. https://doi.org/10.1128/aem.71.4.1685

De Souza, J. T., D.M. Weller, and J.M. Raaijmakers. 2003. Frequency, diversity, and activity of 2,4-diacetylphloroglucinol producing Fluorescent pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93(1): 54–63. https://doi.org/10.1094/phyto. 2003.93.1.54

Deshwal, V. K. 2012. Pseudomonas aeruginosa as biological control agent againt plant pathogenic fungus Sclerotina sclerotiorum. International Journal of Plant, Animal and Environmental Sciences, 2(1): 14–17.

Dominic, M., and M. Marthamakobe. 2017. Biological control of cashew powdery mildew using Ampelomyces quisqualis Ces. Journal of Biological Control, 30(4): 226. https://doi.org/ 10.18311/jbc/2016/15591

Doornbos, R. F., L.C. Van Loon, and P.A.H.M. Bakker. 2012. Impact of root exudates and plant defense signaling on bacteria communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1): 227–243. https://doi.org/10.1007/s13593-011-0028-y

Dumas, M. T., and G. Laflamme. 2013. Efficacy of two Phlebiopsis gigantea formulations in preventing heterobasidion irregulare colonization of red pine stumps in Eastern Canada. Phytoprotection, 93(1): 25. https://doi.org/10.7202/1018887ar

Ekundayo, E.A., F.O. Ekundayo, and I.A. Osinowo. 2015. Antifungal activities of Trichoderma viride and two fungicides in controlling diseases caused by Sclerotium rolfsii on tomato plants. Advances in Applied Science Research, 6(3): 12–19.

El-Hasan, A., F. Walker, J. Schöne, and H. Buchenauer. 2007. Antagonistic effect of 6-pentyl-alpha-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. Journal Of Plant Diseases and Protection, 114(2): 62–68. https:// doi.org/10.1007/bf03356205

El-Komy, M. H., A.A. Saleh, A. Eranthodi, and Y.Y. Molan. 2015. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt.Plant Pathology Journal, 31(1): 50–60. https://doi.org/10.5423/ppj.oa.09.2014.0087

Etesami, H., H.A. Alikhani, and A.A. Akbari. 2009. Evaluation of plant growth hormones production (IAA) ability by iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appllied Sciences Journal, 6(11): 1576–1584. Retrieved from http://scholar.google.com/ scholar?hl=en&btng=search&q=intitle:evaluation+ of+ plant+ growth+hormones+production+(+iaa+)+ability+by+iranian + s o i l s + r h i z o b i a l + s t r a i n s + a n d + e f f e c t s + o f + s u p e r i o +strains+application+on+wheat+growth+ indexes#0

Fang, Y., and R.P. Ramasamy. 2015. Current And Prospective Methods For Plant Disease Detection. Biosensors, 5(3): 537–561. https://doi.org/10.3390/bios5030537

Gaby, J. C., and D.H. Buckley. 2012. A comprehensive evaluation of PCR primers to amplify the nifh gene of nitrogenase. Plos ONE, 7(7), E42149. https://doi.org/10.1371/ journal. pone. 0042149

Garima, G., and J.P. Nath. 2015. Screening of potential PGPR candidates as future biofertilizers - a strategic approach from lab to field. Research Journal of Biotechnology, 10(11): 48–62.

Gava, C.A.T., and J.M. Pinto. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f.sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97, 13–20. https://doi.org/10.1016/j.biocontrol. 2016.02.010

Ginting, C., and S. Mujim. 2007. Efikasi Verticillium lecanii untuk mengendalikan penyakit karat pada cakram daun kopi di laboratorium. Jurnal Hama dan Penyakit Tumbuhan Tropika, 7(2): 125–129.

Glick, B. R. 2012. Plant growth promoting bacteria/: Mechanisms and applications. Scientifica, 963401. https://doi.org/10.6064/ 2012/963401

Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009

Gordon, T. C., and W.F. Pfender. 2012. Effects of the mycoparasite Sphaerellopsis filum on overwintering survival of stem rust in perennial ryegrass. Plant Disease, 96(10): 1471–1481. https://doi.org/10.1094/pdis-10-11-0837-re

Gupta, A., and M. Gopal. 2008. Siderophore production by plant growth promoting rhizobacteria. Indian Journal of Agricultural Research, 42(2): 153–156.

Gupta, G., S.S. Parihar, N.K. Ahirwar, S.K. Snehi, and V. Singh. 2015. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7(2): 96–102. https://doi.org/10.4172/1948-5948.1000188

Gupta, R., J. Vakhlu, A. Agarwal, and P.D. Nilawe. 2014. draft genome sequence of plant growth promoting Bacillus amyloliquefaciens strain W2 associated with Crocus sativus (Saffron). Genome Announcements, 2(5): E00862-14. https://doi.org/10.1128/ genomea.00862-14

Hafeez, F. Y., S. Yasmin, D. Ariani, M. Rahman, Y. Zafar, and K.A. Malik. 2008. agronomy for sustainable development. Agronomy for Sustainable Development, 26: 143–150. https://doi.org/10.1051/agro:2006007

Hang, N. T. T., S.O. Oh, G.H. Kim, J.S. Hur, and Y.J. Koh. 2005. Bacillus subtilis S1-0210 as a biocontrol agent againts Botrytis cinerea in strawberries. Plant Pathology Journal, 21(1): 59– 63.

Hanudin, Budiarto, K., and B. Marwoto. 2017. Application of PGPR and antagonist fungi-based biofungicide for white rust disease control and its economyc analysis in chrysanthemum production. AGRIVITA Journal of Agricultural Science, 39(3), 266–278. https://doi.org/10.17503/agrivita.v39i3.1326

Hanudin, Muchtaromi, B. Marwoto, R. Soehendy, W. Nuryani, I. Djatnika, E.S. Yusuf, K. Budiarto, dan I.B. Rahardjo. 2016. Komposisi dan proses pembuatan pupuk hayati dan pembenah tanah berbahan aktif plant growth promoting rhizobacteria (PGPR) dan cendawan menguntungkan. Pendaftaran Paten No. P00201605271, 10 Agustus 2016. Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia, Jakarta, 13 hlm.

Hanudin, W. Nuryani, W., E.S. Yusuf, dan B. Marwoto. 2011. Biopestisida organik berbahan aktif Bacillus subtilis dan Pseudomonas fluorescens untuk mengendalikan penyakit layu fusarium pada anyelir. Jurnal Hortikultura, 21(212): 152–163. https://doi.org/10.21082/jhort.v21n2.2011. p. 152163.

Hanudin, W. Nuryani, E. Silvia, I. Djatnika, dan B. Marwoto. 2010. Formulasi Biopestisida Berbahan Aktif Bacillus subtilis, Corynebacterium sp. non patogenik, dan Pseudomonas fluorescens untuk mengendalikan penyakit karat putih pada Krisan. Jurnal Hortikultura, 20(3): 247–261.

Hanudin, B. Marwoto, B. Tjahjono, M. Machmud, dan K. Mulya. 2009. Komposisi biopestisida cair berbahan aktif Bacilllus subtilis dan Pseudomonas fluorescens untuk pengendalian penyakit tanaman hias dan tanaman lainnya. Sertifikat paten no. I. D. 0 022 384. Departemen Hukum dan Hak Asasi Manusia, Dirjen Haki, 19 hlm. Jakarta, 12 Januari 2009.

Howell, C. R., J.E. Devay, R.H. Garber, and W.E. Batson. 1997. Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed treatments. The Journal of Cotton Science, 20(1): 15–20.

Ibrahim, Y. E., A.A. Saleh, M.H. El Komy, and M.A. Al-Saleh. 2016. Bacillus subtilis QST713, copper hydroxide, and their thank mixes for control of bacterial citrus cancer in Saudi Arabia. Journal of Citrus Phatology, iocv_journalcitruspathology 30994.

Islam, M. T., Y. Hashidoko, A. Deora, T. Ito, and S. Tahara. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied and Environmental Microbiology, 71(7): 3786–3796. https://doi.org/10.1128/aem.71.7.3786-3796. 2005.

Joshi, M., R. Srivastava, A.K. Sharma, and A. Prakash. 2012. Screening of resistant varieties and antagonistic Fusarium oxysporum for biocontrol of fusarium wilt of chilli. Journal Of Plant Pathology & Microbiology, 3(5): 134. https://doi.org/ 10.4172/2157-7471.1000134

Kefialew, Y., and A. Ayalew. 2008. Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1): 8–11. https://doi.org/10.1016 j.postharvbio.2008.03.007

Kepripolitik. 2010. Dampak penggunaan DDT (Dichloro-diphenyltrichloroethan) sebagai pestisida. http://mantrihewan.blogspot. com/2010/05/dampak-penggunaan-ddt-dichloro-diphenyl.html

Khan, J., J.J. Ooka, S.A. Miller, L.V. Madden, and H.A.J. Hoitink. 2004. Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Disease, 88(3): 280–286. https://doi.org/10.1094/pdis.2004.88.3.280

Khan, M. S., A. Zaidi, M. Ahemad, M. Oves, and P.A. Wani. 2010. Plant growth promotion by phosphate solubilizing fungi -Current perspective. Archives of Agronomy and Soil Science, 56(1), 73–98. https://doi.org/10.1080/03650340902806469

Kim, S. H., J. Cheng, S.H. Yang, J.W. Suh, E.S. Song, L.W. Kang, and J.G. Kim. 2015. Screening the antibacterial activities of streptomyces extracts against phytopathogens Xanthomonas oryzae pathovar oryzae, Xanthomonas campestris pathovar vesicatoria, and Pectobacterium carotovorum pathovar carotovorum. Journal of Applied Biological Chemistry, 58(3), 253–258. https://doi.org/10.3839/jabc.2015.040

Köhl, J., M. Gerlagh, B.H. De Haas, and M.C. Krijger. 1998. Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions. Phytopathology, 88(6), 568–575. https:// doi.org/10.1094/phyto.1998.88.6.568

Korsten, L., E.E. De Villiers, F.C. Wehner, and J.M. Kotzé. 1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease,81(5): 455–459. https://doi.org/10.1094/pdis.1997. 81.5.455

Loper, J.E., and H. Gross. 2007. Genomic analysis of antifungal metabolite production by Pseudomonas flourescens Pf-5. European Journal of Plant Pathology, 119, 265–278. https://doi.org/10.1005/s10658=007-9179-8

Lozano, G.L., J. Holt, J. Ravel, D.A. Rasko, M.G. Thomas, and J. Handelsman. 2016. Draft genome sequence of biocontrol agent Bacillus cereus UW85. Genome Announcements, 4(5): E00910-16. https://doi.org/10.1128/genomea.00910-16

Lugtenberg, B., and F. Kamilova. 2009. Plant growth promoting rhizobacteria. Annual Review Of Microbiology, 63(1): 541–556. https://doi.org/10.114/annurev.micro.62.081307.162918

Lumsden, R.D., and J.C. Locke. 1989. Biological control of dampingoff caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology, 79(3): 361–366.

Mabood F, X. Zhou, and D.L. Smith. 2014. Microbial signaling and plant growth promotion. Canadian Journal of Plant Science, 2014, 94(6): 1051–1063, https://doi.org/10.4141/cjps2013-148.

Mawarni, T., L. Soesanto, and D.S. Utami. 2002. Tanggapan beberapa varietas terung terhadap penyakit layu bakteri dan pengendalian hayatinya dengan Pseudomonas fluorescens. Jurnal Pembangunan Pedesaan, 2(2): 1–8.s

Mbarga, J.B., G.M. Ten Hoopen, J. Kuaté, A. Adiobo, M.E.L. Ngonkeu, Z. Ambang, and B.A.D. Begoude. 2012. Trichoderma asperellum: A potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Protection, 36, 18–22. https://doi.org/10.1016/j.cropro.2012.02.004

Mishra, B. K., R.K. Mishra, R.C. Mishra, A.K. Tiwari, R.Y. Singh, and A. Dikshit. 2011. Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiata L. Archives of Applied Science Research, 3(2): 361–369.

Naglot, A., S. Goswami, I. Rahman, D.D. Shrimali, K.K. Yadav, V.K. Gupta, and V. Veer. 2015. Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. Plant Pathology Journal, 31(3): 278– 289. https://doi.org/10.5423/ppj.oa.01.2015.0004

Nosir, W. S. 2016. Trichoderma harzianum as a growth promoter and biocontrol agent against Fusarium oxysporum f.sp. tuberosi. Advances in Crop Science and Technology, 4, 217. https://doi.org/10.4172/2329-8863.1000217

Nuryani, W., I. Djatnika, E.S. Yusuf, Hanudin, dan Muhidin. 2013. Formulasi kompos berbahan aktif Gliocladium sp. dan proses pembuatannya. Sertifikat Paten No. IDP000034666, 1 Oktober 2013. Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia.

Nuryani W, Hanudin, I.P. Wardana, and K. Budiarto. 2018. Evaluation of Several Formulated Biofertilizers To Control Fruit Rot And Improve Yield On Chili Pepper. International Journal of Agriculture, Environment and Bioresearch. 3(5): 1732.

Olatinwo, R., J.O. Becker, and J. Borneman. 2006. Suppression of Heterodera schachtii populations by Dactylella oviparasitica in four soils. Journal of Nematology, 38(3): 345–348.

Oteino, N., R.D. Lally, S. Kiwanuka, A. Lloyd, D. Ryan, K.J. Germaine, and D.N. Dowling. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745. https://doi.org/ 10.3389/fmicb.2015.00745

Parmar, K.B., B.P. Mehta, and M.D. Kunt. 2016. Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize (Zea mays), 5(5): 3030–3037.

Paul, D., and H. Lade. 2014. Plant growth promoting rhizobacteria to improve crop growth in saline soils: A review. Agronomy for Sustainable Development, 34(4): 737–752. https://doi.org/10.1007/s13593-014-0233-6.

Pesticide Board Malaysia. 2016. Guidelines For Biopesticide Registration. Pesticides Board Department Of Agriculture Jalan Sultan Salahuddin 50632 Kuala Lumpur Malaysia. 18 p. http:// w w w. d o a . g o v. m y / i n d e x / r e s o u r c e s / a k t i v i t i _ s u m b e r / sumber_awam/maklumat_racun_perosak/pendaftaran_rmp/garis_panduan_biopesticide_gp7_2016.pdf. [12 Maret 2018].

Pimentel, D. 2005. Environmental and economic costs of the application of pesticides primarily in the united states. Environment, Development and Sustainability, 7: 229–252. https://doi.org/10.1007/s1066-005-7314-2

Premachandra, D., L. Hudek and L. Brau. 2016. Bacterial modes of action for enhancing of plant growth. Journal of Biotechnology & biomaterials, 6: 3. https://doi.org/10.4172/2155-952x. 1000236

Pusey, P. L., V.O. Stockwell, C.L. Reardon, T.H.M. Smits, and B. Duffy. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology, 101(10): 1234–1241. https://doi.org/10.1094/phyto-09-10-0253

Putri, W. K., S. Khotimah, dan R. Linda. 2015. Jamur rizosfer sebagai agen antagonis pengendali penyakit lapuk fusarium pada batang tanaman karet (Hevea brasiliensis Muellarg). Protobiont, 4(3): 14–18.

Qurashi, A. W., and A.N. Sabri. 2012. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43(3): 183–1191. https://doi.org/10.1590/s1517-83822012000300046

Radzki, W., F.J. Gutierrez Mañero, E. Algar, J.A. Lucas García, A. García-Villaraco, and S.B. Ramos. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 104(3): 321–330. https://doi.org/10.1007/s10482-013-9954-9

Ramli, N. R., M.S. Mohamed, I.A. Seman, M.A. Zairun, and M. Mohamad. 2016. The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malaysiana, 45(3): 401–409.

Rayati, D. J. 2011. Efektivitas berbagai agensia pengendali hayati terhadap penyakit cacar (Exobasidium vexans Massee) Pada Tanaman Teh. Jurnal Penelitian Teh dan Kina, 14(1): 8–15.

Reed, S. C., C.C. Cleveland, and A.R. Townsend. 2011. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 42(1): 489–512. https://doi.org/10.1146/annurevecolsys-102710-145034

Rose, S., M. Parker, and Z.K. Punja. 2003. Efficacy of biological and chemical treatments for control of Fusarium root and stem rot on greenhouse cucumber. Plant Disease, 87(12): 1462– 1470. https://doi.org/10.1094/pdis.2003.87.12.1462

Sabur, S. A., and A.R. Molla. 2001. Pesticide use, its impact on crop production and evaluation of IPM technologies in Bangladesh. Bangladesh Journal of Agricultural Economics, 24(1–2): 21–38.

Saharan, B.S., and V. Nehra. 2011. Plant growth promoting rhizobacteria/: A critical review. Life Sceince And Medicine Research, lsmr-21, 1–30.

Saikia, R., R. Kumar, D.K. Arora, D.K. Gogoi, and P. Azad. 2006. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: Production of salicylic acid and peroxidases. Folia Microbiologica, 51(5): 375–380. https://doi.org/10.1007/bf02931579

Sangeetha, G., S. Usharani, and A. Muthukumar. 2009. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathologia Mediterranea, 48(2):214–225.

Santi, C., D. Bogusz, and C. Franche. 2013. Biological nitrogen fixation in non-legume plants. Annals Of Botany, 111(5): 743– 767. https://doi.org/10.1093/aob/mct048

Santosa, D.A. 2009. Kajian resiko lingkungan untuk penggunaan agen hayati di bidang pertanian. Jurnal Tanah dan Lingkungan,11(1): 14–20.

Saraswati, R., dan Sumarno. 2008. Pemanfaatan mikroba penyubur tanah sebagai komponen teknologi pertanian. Iptek Tanaman Pangan, 3(1): 41–58. Retrieved from http://ejurnal.litbang..go.id/index.php/ippan/article/view/2649/2288

Setiawati, T.C., and L. Mutmainnah. 2016. Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agriculture and Agricultural Science Procedia, 9: 108–117. https://doi.org/10.1016/j.aaspro. 2016.02.134

Sharma, S. B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2: 587. Retrieved from http://www.springerplus.com/ content/2/1/587

Singh, U.B., A. Sahu, N. Sahu, R.K. Singh, S. Renu, D.P. Singh, and K.P. Singh. 2013. Arthrobotrys oligospora-mediated biological control of diseases of tomato (Lycopersicon esculentum Mill.) caused by Meloidogyne incognita and Rhizoctonia solani. Journal of Applied Microbiology, 114(1): 196–208. https://doi.org/10.1111/jam.12009

Sundaramoorthy, S., and P. Balabaskar. 2013. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici. Journal of Applied Biology & Biotechnology, 1(3): 36–40. https://doi.org/10.7324/jabb.2013. 1306.

Tailor, A. J., and B.H. Joshi. 2012. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. Journal of Environmental Research and Development, 6(3): 688–694.

Tariq, M., S. Hameed, T. Yasmeen, M. Zahid, and M. Zafar. 2014. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, 30(2): 719–725. https://doi.org/10.1007/s11274-013-1488-9

Thanos, C. AA., D. Tomuka, and NTS Malo. 2016. Livor mortis pada keracunan insektisida golongan organofosfat di kelinci. Jurnal e-clinic (ecl), 4(1): 1020.

Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A.N. Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability - A review. Molecules, 21(5): 1–17. https://doi.org/10.3390/molecules21050573

Vicedo, B., R. Penalver, M.J. Asins, and M.M. Lopez. 1993. Biological control of Agrobacterium tumefaciens, colonization, and PAGK84 transfer with agrobacterium radiobacter K84 and the tra-mutant strain K1026. Applied and Environmental Microbiology, 59(1): 309–315.

Voisard, C., C. Keel, D. Haas, and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal, 8(2): 351–358. https://doi.org/10.1111/j.1574-6941.1997.tb00 394.x

Wang, Y., Z. Xu, P. Zhu, Y. Liu, Z. Zhang, Y. Mastuda, and L. Xu. 2010. Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. Journal of Plant Pathology, 92(3): 645–652. https://doi.org/10.4454/jpp.v92i3.309

Wastra, A.R. 2015. Perlindungan produk pertanian menghadapi pasar bebas asean (MEA 2015. Jurnal Agribisnis, 8(2): 111–124.

Whipps, J. M., S. Sreenivasaprasad, S. Muthumeenakshi, C.W. Rogers, and M.P. Challen. 2008. use of coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. European Journal of Plant Pathology, 121: 323–330. https://doi.org/10.1007/s10658-007-9238-1

Wibowo, A., A. Santosa, S. Subandiyah, C. Hermanto, and M.F.P. Taylor. 2013. Control of fusarium wilt of banana by using Trichoderma harzianum and resistant banana cultivars. Acta Horticulturae, (975): 173–177. https://doi.org/10.17660/ actahortic.2013.975.18

Wu, Y., J. Yuan, W. Raza, Q. Shen and Q. Huang. 2014. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. Journal of Microbiology and Biotechnology, 24(10): 1327–1336. https://doi.org/10.4014/jmb.1402.02061

Yadav, A. N., P. Verma, B. Singh, V.S. Chauahan, A. Suman, and A.K. Saxena. 2017. Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Advances in Biotechnology & Microbiology, 5(5), 555671. https://doi.org/10.19080/aibm.2017.05.555671.

Yudha, M.K., L. Soesanto, dan E. Mugiastuti. 2016. Pemanfaatan empat isolat Trichoderma sp. untuk mengendalikan penyakit akar gada pada tanaman caisin. Jurnal Kultivasi 15(3): 14– 149.

Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4): 968– 989. Retrieved from http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=98982&tool pmcentrez & rendertype= abstract




DOI: http://dx.doi.org/10.21082/jp3.v37n2.2018.p59-70

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Penelitian dan Pengembangan Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

Balai Pengelola Alih Teknologi Pertanian
Jalan Salak No.22, Bogor 16151
Telp. : (0251) 8382563
Faks. : (0251) 8382567
E-mail : jurnallitbang@gmail.com
Website : http://bpatp.litbang.pertanian.go.id

          


Creative Commons License
JP3 is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

View My Stats