Respon dan Seleksi Tanaman Kentang Terhadap Kekeringan (Response and Selection of Potato Plants to Drought)

Tri Handayani, nFN Kusmana, Helmi Kurniawan

Abstract


Kekeringan sangat berpengaruh terhadap pertumbuhan dan produksi tanaman kentang. Persilangan dengan tujuan toleran kekeringan telah dilakukan dan dilanjutkan dengan seleksi terbatas. Tujuan penelitian untuk mempelajari respon tanaman kentang terhadap kekeringan dan melakukan seleksi klon-klon hasil persilangan untuk sifat toleran kekeringan. Materi yang digunakan adalah 78 nomor hasil seleksi progeni kekeringan tahun 2015. Penelitian dilakukan dengan membandingkan antara tanaman pada kondisi kekeringan dan pengairan normal di dalam Rumah Kaca Balai Penelitian Tanaman Sayuran, Lembang, pada tahun 2016. Hasil penelitian menunjukkan bahwa cekaman kekeringan berpengaruh terhadap karakter pertumbuhan dan hasil. Pada kondisi kekeringan, vigor tanaman menurun dan menunjukkan gejala layu, menguning, serta daun menggulung ke atas. Kekeringan juga menyebabkan penurunan pada diameter batang (41,4%), jumlah batang (6,63%), tinggi tanaman (22,43%), diameter kanopi (18,76%), luas daun (53,7%), jumlah ubi pertanaman (17,54%), berat ubi pertanaman (70,35%), panjang ubi (44,45%) serta diameter ubi (42,85%). Respon tanaman terhadap kekeringan yang lain ditunjukkan oleh peningkatan kadar prolin daun dan klorofil. Seleksi berdasarkan perubahan karakter morfologi, pertumbuhan vegetatif serta produksi ubi, diperoleh 26 genotipe yang berpotensi memiliki sifat toleran terhadap kekeringan. Genotipe terseleksi tersebut memiliki kisaran jumlah ubi per tanaman 1,67 – 12,25, berat ubi per tanaman 26,45 – 80,775 g, panjang ubi 2,05 – 3,4 cm serta diameter ubi 1,43 – 3,06 cm. Hasil dari seleksi kekeringan ini akan dilanjutkan ke seleksi di lapangan untuk mendapatkan klon unggul kentang toleran terhadap kekeringan. Ketersediaan klon kentang toleran kekeringan dapat menjawab ancaman menurunnya produksi kentang akibat perubahan iklim.

Keywords

Solanum tuberosum L.; Produksi ubi; Prolin; Toleran kekeringan   

Abstract

Drought is very influential towards the growth and production of the potato crop. A crossing to drought-tolerant genotypes was conducted and continued with a progeny selection. The aims of this study were to study the response of the potato plant to drought stress and to select potato clones resulted from conventional crossing for drought tolerant. The genetic materials tested were 78 progenies resulted from drought selection in 2015. The study was conducted by comparing plants in drought and normal irrigation conditions in the Greenhouse of the Indonesian Vegetable Research Institute, Lembang, in 2016. Results showed that drought stress affected potato growth as well as tuber yield. On drought conditions, potato plants tend to be poor of plant vigor, showed wilting symptom, yellowing leaves and roll up of the leaves. Drought stress caused the decline of stem diameter of (41.4%), main stem number (6.63%), plant height (22.43%), canopy diameter  (18.76%), leaf area  (53.7%), per plant tuber number (17.54%), per plant tuber weight (70.35%), tuber length (44.45%) and tuber diameter (42.85%). Another response to drought was the increasing level of proline and chlorophyll in leaf. Based on morphological character changes, vegetative growth and tuber production, 26 genotypes demonstrated potential drought tolerance. The selected genotypes will be used to the next selection in the field to get stable drought-tolerant potato clones. The availability of drought-tolerant potato clones can respond to the threat of reduced potato production due to climate change. 


Keywords


Solanum tuberosum L.; Tuber yield; Proline; Drought tolerant

Full Text:

PDF

References


Anithakumari, AM, Nataraja, KN, Visser, RGF & van der Linden, CG 2012, ‘Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population’, Molecular Breeding, vol. 30, no. 3, pp. 1413–1429.

Arnon, DI 1949, ‘Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta Vulgaris’, Plant Physiology, vol. 24, no. 1, pp. 1–15.

Basu, S, Ramegowda, V, Kumar, A & Pereira, A 2016, ‘Plant adaptation to drought stress [ version 1 ; referees : 3 approved ]’, F1000Research, vol. 5, (F1000 Faculty Revs: 1554 (doi: 10.12688/flow research.7678.1).

Bates, LS 1973, ‘Rapid determination of free proline for water - stress studies’, Plant and Soil, vol. 39, pp. 205–207.

Bennani, S, Nsarellah, N, Birouk, A, Ouabbou, H & Tadesse, W 2016, ‘Effective selection criteria for screening drought tolerant and high yielding bread wheat genotypes’, Universal Journal of Agricultural Research, vol. 4, no. 4, pp. 134–142.

Bundig, C, Vu, TH, Meise, P, Seddig, S, Schum, A & Winkelmann, T 2017, ‘Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L .) as revealed by an in vitro screening : role of proline, osmotic adjustment and drought response in pot trials’, J Agro Crop Sci, vol. 203, no. 3, pp. 206–218.

Chutia, J & Borah, SP 2012, ‘Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of assam, India II. Protein and proline status in seedlings under PEG induced water stress’, American Journal of Plant Sciences, vol. 3, no. 7, pp. 971–980.

Deblonde, PMK & Ledent, JF 2001, ‘Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars’, European Journal of Agronomy, vol. 14, pp. 31–41.

De Haan, S, Forbes, A, Amoros, W, Gastelo, M, Salas, E, Hualla, V, de Mendiburu, F & Bonierbale, M 2014, Procedure for standard evaluation and data management of advanced potato clones. Module 2: healthy tuber yield trials, International Potato Center, Lima, Peru.

Evers, D, Lefevre, I, Legay, S, Lamoureux, D, Hausman, J-F, Rosales, ROG, Marca, LRT, Hoffmann, L, Bonierbale, M & Schafleitner, R 2010, ‘Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach’, Journal of Experimental Botany, vol. 61, no. 9, pp. 2327–2343.

FAO 2016, Climate change and food security, .

Guan, YS, Serraj, R, Liu, SH, Xu, JL, Ali, J, Wang, WS, Venus, E, Zhu, LH & Li, ZK 2010, ‘Simultaneously improving yield under drought stress and non-stress conditions: A case study of rice (Oryza sativa L.)’, Journal of Experimental Botany, vol. 61, no. 15, pp. 4145–4156.

Heuer, B & Nadler, A 1995, ‘Growth and development of potatoes under salinity and water deficit’, Aust. J. Agric. Res., vol. 46, pp. 1477–1486.

Krannich, CT, Maletzki, L, Kurowsky, C & Horn, R 2015, ‘Network candidate genes in breeding for drought tolerant crops’, International Journal of Molecular Sciences, vol. 16, no. 7, pp. 16378–16400.

Lahlou, O, Ouattar, S & Ledent, J-F 2003, ‘The effect of drought and cultivar on growth parameters, yield and yield components of potato’, Agronomie, vol. 23, pp. 257–268.

Lahlou, O, Ouattar, S & Ledent, JF 2003, ‘The effect of drought and cultivar on growth parameters, yield and yield components of potato’, Agronomie, vol. 23, no. 3, pp. 257–268.

van Muijen, D, Anithakumari, AM, Maliepaard, C, Visser, RGF & van der Linden, CG 2016, ‘Systems genetics reveals key genetic elements of drought induced gene regulation in diploid potato’, Plant Cell and Environment, vol. 39, no. 9, pp. 1895–1908.

Muthoni, J & Kabira, JN 2016, ‘Potato production under drought conditions: identification of adaptive traits’, International Journal of Horticulture, vol. 2010, pp. 1–12.

Obidiegwu, JE, Bryan, GJ, Jones, HG & Prashar, A 2015, ‘Coping with drought: stress and adaptive responses in potato and perspectives for improvement’, Frontiers in Plant Science, vol. 6, no. 542.

Okogbenin, E, Setter, TL, Ferguson, M, Mutegi, R, Ceballos, H, Olasanmi, B & Fregene, M 2013, ‘Phenotypic approaches to drought in cassava: review’, Frontiers in Physiology, vol. 4, no. 93, pp. 1–15.

Pérez-Harguindeguy, N, Diaz, S, Garnier, E, Lavorel, S, Poorter, H, Jaureguiberry, P, Bret-Harte, MSS, Cornwell, WKK, Craine, JMM, Gurvich, DEE, Urcelay, C, Veneklaas, EJJ, Reich, PBB, Poorter, L, Wright, IJJ, Etc., Ray, P, Etc., Díaz, S, Lavorel, S, Poorter, H, Jaureguiberry, P, Bret-Harte, MSS, Cornwell, WKK, Craine, JMM, Gurvich, DEE, Urcelay, C, Veneklaas, EJJ, Reich, PBB, Poorter, L, Wright, IJJ, Ray, P, Enrico, L, Pausas, JG, Vos, AC de, Buchmann, N, Funes, G, Quétier, F, Hodgson, JG, Thompson, K, Morgan, HD, Steege, H ter, Heijden, MGA van der, Sack, L, Blonder, B, Poschlod, P, Vaieretti, M V., Conti, G, Staver, AC, Aquino, S & Cornelissen, JHC 2016, ‘New handbook for standardized measurment of plant functional traits worldwide’, Australian Journal of Botany, vol. 61, no. 34, pp. 167–234.

Saravia, D, Farfán-Vignolo, ER, Gutiérrez, R, De Mendiburu, F, Schafleitner, R, Bonierbale, M & Khan, MA 2016, ‘Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization’, American Journal of Potato Research, vol. 93, no. 3, pp. 288–295.

Schafleitner, R, Gaudin, A, Rosales, ROG, Aliaga, CAA & Bonierbale, M 2007, ‘Proline accumulation and real time PCR expression analysis of genes encoding enzymes of proline metabolism in relation to drought tolerance in Andean potato’, Acta Physiol Plant, vol. 29, pp. 19–26.

Schafleitner, R, Gutierrez, R, Espino, R, Gaudin, A, Perez, J, Martinez, M, Dominiguez, A, Tincopa, L, Alvarado, C, Numberto, G & Bonierbale, M 2007, ‘Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis’, Potato Research, vol. 50, pp. 71–85.

Schafleitner, R, Rosales, ROG, Legay, S, Evers, D & Bonierbale, M 2009, ‘Drought stress tolerants traits on potato’, Proceeding of the 15th Triennial ISTRC Symposium, International Society for Tropical Root Crops, Lima, Peru, pp. 1–5.

Shi, S, Fan, M, Iwama, K, Li, F, Zhang, Z & Jia, L 2015, ‘Physiological basis of drought tolerance in potato grown under long-term water deficiency’, International Journal of Plant Production, vol. 9, no. 2, pp. 305–320.

Silva, F de AS e & Azevedo, CAV de 2016, ‘The assistat software version 7.7 and its use in the analysis of experimental data’, African Journal of Agricultural Research, vol. 11, no. 39, pp. 3733–3740.

Sofiari, E 2015, Perakitan varietas unggul kentang tahan cekaman biotik dan abiotik, Laporan RPTP 2014, Lembang.

Sofiari, E 2016, Perakitan varietas unggul kentang tahan cekaman biotik dan abiotik, Laporan RPTP 2015, Lembang.

Soltys-Kalina, D, Plich, J, Strzelczyk-Żyta, D, Śliwka, J & Marczewski, W 2016, ‘The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of “Katahdin”-derived potato cultivars’, Breeding Science, vol. 66, pp. 328–331.

Souza, AT de, Streck, NA, Heldwein, AB, Bisognin, DA, Winck, JEM, Rocha, TSM & Zainon, AJ 2014, ‘Transpiration and leaf growth of potato clones in response to soil water deficit’, Scientia Agricola, vol. 71, no. 2, pp. 96–104.

Teixeira, J & Pereira, S 2007, ‘High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation’, Environmental and Experimental Botany, vol. 60, no. 1, pp. 121–126.

Tuberosa, R 2012, ‘Phenotyping for drought tolerance of crops in the genomics era’, Frontiers in Physiology, vol. 3, article 347, doi: 10.3389 fphys.2012.00347.

Upchurch, RP, Peterson, ML & Hagan, RM 1955, ‘Effects of soil-moisture contennt on the rate of photosynthesis and respiration in ladino clover (Trifolium repens L.)’, Plant Physiology, vol. 30, no. 4, pp. 297–303.

UPOV 2004, Guidelines for the conduct of tests for distinctness, uniformity and stability, Geneva, Switzerland.

Vasquez-robinet, C, Mane, SP, Ulanov, A V, Watkinson, JI, Stromberg, VK, Koeyer, D De, Schafleitner, R, Willmot, DB, Bonierbale, M, Bohnert, HJ & Grene, R 2008, ‘Physiological and molecular adaptations to drought in Andean potato genotypes’, Journal of Experimental Botany, vol. 59, no. 8, pp. 2109–2123.

Wang, L, Guo, Z, Zhang, Y, Wang, Y, Yang, G, Yang, L, Wang, R & Xie, Z 2017, ‘Characterization of LhSorP5CS, a gene catalyzing proline synthesis in oriental hybrid lily Sorbonne: molecular modelling and expression analysis’, Botanical Studies, vol. 58, no. 10, p. 8.

Watkinson, JI, Hendricks, L, Sioson, AA, Vasquez-Robinet, C, Stromberg, V, Heath, LS, Schuler, M, Bohnert, HJ, Bonierbale, M & Grene, R 2006, ‘Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles’, Plant Science, vol. 171, no. 6, pp. 745–758.




DOI: http://dx.doi.org/10.21082/jhort.v28n2.2018.p163-174

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments
';



Copyright (c) 2018 Indonesian Center for Horticulture Research and Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Jurnal Hortikultura (J.Hort) has been indexed :

         

===================================================================================================================

 Creative Commons License
Junal Hortikultura is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.litbang.pertanian.go.id/index.php/jhort
Permissions beyond the scope of this license may be available at www.litbang.pertanian.go.id.

Indonesian Center for Horticulture Research and Development

Jl. Tentara Pelajar No. 3C Kampus Penelitian Pertanian Cimanggu Bogor 16124, Indonesia
Telp.  +62 251-8372096, 7565366, (Ext. 324) (Hunting System)
Faks.  +62 251-8387651, 8575664, 8372096
E-mail: redaksi.jhorti@gmail.com

ISSN: 0853-7097
E-ISSN: 2502-5120

 

free web stats

View My Stats