Keragaman Genetik Rizobakteri Penghasil Asam Indol Asetat Berdasarkan 16S rRNA dan Amplified Ribosomal DNA Restriction Analysis

Puji Lestari, Dwi N. Susilowati, I Made Samudra, Tri P. Priyatno, Kristianto Nugroho, Whyranti Nurarfa, Inda Setyawati, Yadi Suryadi

Abstract


Asam indol asetat (AIA) dapat dihasilkan oleh bakteri rizosfer/rizobakteri pemacu pertumbuhan tanaman (PPT). Keragaman genetik isolat bakteri PPT indigenous Indonesia perlu diinvestigasi untuk mencari sumber potensial agen PPT dengan informasi kekerabatan intra dan interspesies yang jelas. Karena itu penelitian ini bertujuan mengetahui keragaman genetik rizobakteri penghasil AIA indigenous Indonesia dengan gen 16S rRNA, dilengkapi dengan ARDRA. Koleksi isolat bakteri BB Biogen diidentifikasi kandungan AIA-nya, morfologi secara makroskopis dan sekuensing pada sekuen 16S rRNA dan ARDRA. Total empat belas isolat rizobakteri memiliki kandungan AIA dalam kisaran 5,24-37,69 µg/ml dan tertinggi pada SM1. Karakteristik morfologi koloni rizobakteri mendukung variasi strain bakteri penghasil AIA. Delapan isolat terpilih diidentifikasi sebagai spesies Bacillus dengan homologi 96-99%. Lima isolat (SM1, JP4, KP3, MB2, dan CP3) diidentifikasikan sebagai B. subtilis, SC2 sebagai B. amyloliquefaciens, BL2 dekat dengan B. velezensis, dan JP3 memiliki homologi tinggi dengan Brevundimonas olei. Delapan isolat rizobakteri tersebut berkerabat dekat dengan strain bakteri referensi yang memiliki kesamaan spesies. Analisis ARDRA-RsaI menghasilkan lima filotipe dengan keunikan pola sidik jari. Isolat CP3, MB 2, dan KP 3 berada dalam satu filotipe. Kedekatan isolat dalam Bacillus sp. digambarkan oleh filotipe 5 (B. subtilis SM1 dan B. velezensis BL2) yang diduga jauh dari B. amyloliquefaciens SC2 (filotipe 4) dan JP 3 pada genus Brevundimonas (filotipe 3). Keragaman genetik isolat rizobakteri penghasil AIA terhitung rendah berdasarkan 16S-rRNA dan ARDRA-RsaI.


Keywords


AIA; ARDRA; rizobakteri pemacu pertumbuhan tanaman; 16S rDNA; keragaman genetik

Full Text:

PDF

References


Bahri, S., Wahyudi, A.T. & Mubarik, N.R. (2009) Genetic diversity of plant growth promoting rhizobacteria of Bacillus sp. based on 16S rRNA sequence and amplified rDNA restriction analysis. Microbiology Indonesia, 3 (1), 12-16. doi: 10.5454/mi.3.1.2.

Banerjee, S., Palit, R., Sengupta, C. & Standing, D. (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Australian Journal of Crop Science, 4 (6), 378-383.

Da Silva, P. & Nahas, E. (2002) Bacterial diversity in soil in response to different plant, phosphate fertilizer and liming. Brazilian Journal of Microbiology, 33, 304-310.

Duca, D., Lorv, J., Patten, C.L., Rose, D. & Glick, B.R. (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek, 106 (1), 85125. doi: 10.1007/s10482-013-0095-y.

Environment and Health Canada. (2015) Final Screening assessment for Bacillus amyloliquefaciens 13563-0, Bacillus atrophaeus 18250-7, Bacillus licheniformis ATCC 12713, Bacillus subtilis ATCC 6051A (=ATCC 6051a), Bacillus subtilis ATCC 55405, Bacillus subtilis subspecies subtilis ATCC 6051, Bacillus subtilis subspecies inaquosorum ATCC 55406, Bacillus species 16970-5, Bacillus species 2 18118-1, Bacillus species 4 18121-4, and Bacillus species 7 18129-3. Canada, Minister of the Environment.

Hall, V., Taibot, P.R., Stubbs, S.L. & Duerden, B.I. (2001) Identification of clinical isolates of actinomyces species by amplified 16S ribosomal DNA restriction analysis. Society, 39 (10), 3555-3562. doi: 10.1128/ JCM.39.10.3555.

Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K. & De Vos, P. (1996) Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. Journal of Microbiological Methods, 26 (3), 247-259. doi: 10.1016/0167-7012(96)00916-5.

Islam, S. Akanda, A.M., Prova, A., Islam, M.T. & Hossain, M.M. (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 1-12. doi: 10.3389/fmicb.2015.01360.

Khan, A.L., Halo, B.A., Elyassi, A., Ali, S. Al-Hosni, K., Hussain, J., Al Harrasi, A. & Lee, I.J. (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21, 58-64. doi: 10.1016/j.ejbt.2016.02.001.

Kumar, A., Kumar, K., Kumar, P., Maurya, R. Prassad, S. & Singh, S.K. (2014) Production of indole acetic acid by Azotobacter strains associated with mungbean. Plant Archives, 14 (1), 41-42.

Lee, M., Srinivasan, S. & Kim, M.K. (2010) New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esterase-producing bacteria. Journal of Microbiology, 48 (5), 616622. doi: 10.1007/s12275-010-9367-7.

Lestari, P., Suryadi, Y., Susilowati, D.N., Priyatno, T.P. & Samudra, I.M. (2015) Karakterisasi bakteri penghasil asam indol asetat dan pengaruhnya terhadap vigor benih padi. Berita Biologi, 14 (1), 19-28.

Leveau, J.H.J. & Lindow, S.E. (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology, 71 (5), 23652371. doi: 10.1128/AEM.71.5.2365.

Logan, N.A. (2012) Bacillus and relatives in foodborne illness. Journal of Applied Microbiology, 112 (3), 417429. doi: 10.1111/j.1365-2672.2011.05204.x.

Lwin, K.M., Myint, M.M., Tar, T. & Aung, W.Z.M. (2012) Isolation of plant hormone (indole-3-acetic acid-IAA) producing rhizobacteria and study on their effects on maize seedling. Engineering Journal, 16 (5), 137-144. doi: 10.4186/ej.2012.16.5.137.

Majeed, A., Abbasi, M.K., Hameed, S., Imran, A. & Rahim, N. (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 110. doi: 10.3389/ fmicb.2015.00198.

Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Dymock, D. & Wade, W.G. (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64 (2), 795799.

Mohite, B. (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13 (3), 638649. doi: 10.4067/S0718-95162013005000051.

Mutluru, S. & Konada, V.M. (2007) Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban (L.) Merr. Iranian Journal of Biotechnology, 5 (3), 178-182.

Naveed, M., Mubeen, S., Khan, S.U., Ahmed, I., Khalid, N. Suleria, R., Bano, A. & Mumtaz, A.S. (2014) Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing. Brazilian Journal of Microbiology, 45 (3), 985993. doi: 10.1590/S1517-83822014000300031.

Ozdal, M., Ozdal, O.G., Sezen, A., Algur, O.F. & Kurbanuglu, E.B. (2017) Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis. Biotechnology 7 (1), 1-6. doi: 10.1007/s13205-017-0605-0.

Patel, P.V. & Desai, P.B. (2015) Isolation of rhizobacteria from paddy field and their traits for plant growth promotion. Research Journal of Recent Sciences, 4, 34-41.

Patten, C.L. & Glick, B.R. (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68 (8), 3795801. doi: 10.1128/AEM. 68.8.3795.

Phetcharat, P. & Duangpaeng, A. (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. In: Kaewkhao, J., Limsuwan, P., Yupapin, P., JanJai, J.S. (eds.) Procedia Engineering, 32, 177183. doi: 10.1016/j.proeng.2012. 01.1254.

Priest, F.G., Goodfellow, M. & Todd, C. (1988) A numerical classification of the genus Bacillus. Analytical Biochemistry, 134, 18471882. doi: 10.1099/ 00221287-134-7-1847.

Rameshkumar, Neelamegam, Ayydurai, N., Kayalvishi, N. & Gunasekaran, N. (2012) Genotypic and phenotypic diversity of PGPR fluorescent pseudomonads isolated from the rhizosphere of sugarcane (Saccharum officinarum L.). Journal of Microbiology and Biotechnology, 22 (1), 13-24. doi: 10.4014/jmb.1107. 07025.

Sasaki, E., Osawa, R., Nishitani, Y. & Whiley, R.A. (2004) ARDRA and RAPD analyses of human and animal isolates of Streptococcus gallolyticus. Journal of Veterinary Medical Science, 66 (11), 1467-1470. doi: 10.1292/jvms.66.1467.

Shih-Yung, H. (2010) IAA production by Streptomyces scabies and its role in plant microbe interaction. Master Thesis, Cornell University.

Singh, S., Chandra, R., Patel, D.K. & Rai, V. (2007) Isolation and characterization of novel Serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste. World Journal of Microbiology and Biotechnology, 23 (12), 1747-1754. doi: 10.1007/s11274-007-9424-5.

Sun, P.F., Fang, W.T., Shin, L.Y., Wei, J.Y., Fu, S.F. & Chu, J.Y. (2014) Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One, 9 (12), 1-22. doi: 10.1371/ journal.pone.0114196.

Suzuki, T. & Yamasato, K. (1994) Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiology Letters, 115 (1), 13-17. doi: 10.1111/j.1574-6968.1994.tb06607.x.

Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24 (8), 1596-1599. doi: 10.1093/molbev/msm092.

Wang-ngarm, S., Chareonsudjai, S. & Chareronsundjai, P. (2014) Physicochemical factors affecting the growth of Burkholderia pseudomallei in soil microcosm. The American Journal of Tropical Medicine and Hygiene, 90 (3), 480-485. doi: 10.4269/ajtmh.13-0446.

Xie, F., Zhu, T., Zhang, F., Zhou, K., Zhao, Y. & Li, Z. (2013) Using Bacillus amyloliquefaciens for remediation of aquaculture water. SpringerPlus, 2 (1), 1-5. doi: 10.1186/2193-1801-2-119.

Yang, J.H., Liu, H.X., Zhu, G.M., Pan, Y.L., Xu, L.D. & Guo, J.H. (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology, 104 (1), 91-104. doi: 10.1111/j.1365-2672.2007.03534.x.

Zhang, S., White, T.L., Martinez, M.C., McInroy, J.A., Kloepper, J.W. & Klassen W. (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biological Control, 53 (1), 129135. doi: 10.1016/j.biocontrol.2009.10.015.




DOI: http://dx.doi.org/10.21082/jbio.v13n1.2017.p25-34

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


           


P-ISSN : 1907-1094
E-ISSN : 2549-1547


Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Faks.: (0251) 8338820
E-mail: jurnal.agrobiogen@gmail.com
Situs: http://biogen.litbang.pertanian.go.id



View My Stats