Gene Duplication to Reveal Adaptation Clue of Plant to Environmental Stress: A Case Study of NBS-LRR Genes in Soybean

Puji Lestari, Suk-Ha Lee, I Made Tasma, Asadi Asadi

Abstract


Gene duplication to reveal adaptation clue of plant to environmental stress: A case study of NBS-LRR genes in soybean. Puji Lestari, Suk-Ha Lee, I Made Tasma, and Asadi. Adaptive strategies of plant to stress are fine-tuned by adjusting several activities including molecular mechanism which involve duplicated genes responsive to environmental changes. Genes responsive to the environmental stresses which are retained after small scale duplication are part of plant genome duplication. However, less information of duplicated genes could be adaptive to environmental changes in plant. This review presents an overview of duplication events in plant genomes which impact to gene duplication in relation to environmental changes, gene duplication as an adaptation mechanism, a case of duplicated nucleotide binding site-leucine-rich repeat (NBS-LRR) genes in soybean, and the gene duplication implementation for plant breeding in Indonesia. Notably, genome duplication events generate gene duplication and contribute to adaptive evolution against environmental changes. Generalization of plants to adapt the stressful conditions also probably improves our understanding of gene duplication as a mechanism of adaptation. Several recently duplicated NBS-LRR genes in soybean retain disease resistance QTL and the differential expression convince their contribution to biotic stress resistance in soybean. Proposed models of NBS-LRR genes duplication process may help to understand these genes response to the environmental changes. The duplication of genes resistant to pest/disease particularly NBS-LRR provides important information to select breeding parents and develop molecular markers related to desease resistance to genetically improve soybean in Indonesia. Overall, it may therefore be possible to enhance breeding which targets on genes tolerance/resistance to abiotic/biotic stress, and provide a molecular basis for crop-stress protection strategy and more improved soybean varieties specified for harsh environment.


Keywords


environmental stress; gene duplication; soybean; pest/disease; NBS-LRR

Full Text:

PDF

References


Ahuja, I., H. de Vos Ric, A.M. Bones, and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trend in Plant Sci. 15: 664-674.

Ashfield, T., A. Bocian, D. Held, A.D. Henk, L.F. Marek, D. Danesh, S. Penuela, K. Meksem, D.A. Lightfoot, Y.D. Young, R.C. Shoemaker, and R.W. Innes. 2003. Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals s complex locus containing several tightly linked families of NBS-LRR genes. Molec. Plant-Microbe Interaction. 16 : 817-826.

Bickhart, D. M.,Y. Hou, S.G. Schroeder, C. Alkan, M.F. Cardone, L.K Matukumali, J. Song, R.D. Schnabel, M. Ventura, J.F. Taylor, J.F. Garcia, C.P. Van Tassel, T.S. Sonstegard, E.E. Eichler, and G.E. Liu. 2012. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 22: 778-790.

Brechenimacher, L., M.Y. Kim, M. Benitez, M. Li, T. Joshi, B. Calla, M.P. Lee, M. Libault, L.O. Vodkin, D. Xu, S.H. Lee, S.J. Clough, and G. Stacey. 2008. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Mol. Plant Microbe. 21: 631-645.

Brown, C. J., K.M. Todd, and R.F. Rosenzweig. 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol. Biol. Evol. 15: 931-942.

Calla, B., O. Radwan, T. Vuong, S.J. Clough. and G.L. Hartman. 2009. Gene expression profiling soybean stem tissue early response to Sclerotinia sclerotiorum and in silico mapping in relation to resistance markers. The Plant Genome. 2: 149-166.

Carretero-Paulet, L. and M.A. Fares. 2012. Evolutionary dynamic and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Mol.Biol.Evol.29 (11):3541-3551.

Ceccarelli, M., E. Santantonio, F. Marmottini, G.N. Amzallag, and P.G. Cionini. 2006 Chromosome endoreduplication as a factor of salt adaptation in Sorghum bicolor. Protoplasma. 227: 113-118.

Chini, A., J.J. Grant, M. Seki, K. Shinozaki, and G.J. Loake. 2004. Drought tolerance established by enchanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 38: 810-822.

Davis, J.C. and D.A. Petrov. 2004. Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol. 2: E55.

DeBolt, S. 2010. Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol. Evol. 2: 441-453.

Dhar, R., R. Sa¨gesser, C.Weikert, J.Yuan, and A.Wagner. 2011 Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24: 1135-1153.

Flagel, L.E. and J.F. Wendel. 2009 Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564.

Freeling, M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60: 433-453.

Gaines, T. A. W. Zhang, D. Wang, B. Bukun, S.T. Chisholm, D.L. Shaner, S.J. Nissen, W.L. Patzoldt, P.J. Tranel, A.S. Culpepper, T.L. Grey, T.M. Webster, W.K Vencill, R.D. Sammons, J. Jiang, C. Preston, J.E. Leach, and P. Westra. 2010 Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA 107: 1029-1034.

Gaines, T. A., D.L. Shaner, S.M. Ward, J.E. Leach, C. Preston, and P. Westra. 2011 Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J. Agric. Food. Chem. 59: 5886-5889.

Goff, S.A, D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant and S. Briggs. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science. 296: 92-100.

Hanada, K., C. Zhou, M.D. Lehti-SHiu, K. Shinozaki, and S.H. Shiu. 2008. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol. 148: 993-1003.

Innan, H. and F. Kondrashov. 2010 The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11: 97-108.

James, T. C., J. Usher, S. Campbell, and U. Bond. 2008 Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Curr. Genet. 53: 139-152.

Kang, Y.J., K.H. Kim, S. Shim, M.Y. Yoon, S. Sun, M.Y. Kim, K. Van, and S.H. Lee. 2012. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biology. 12: 39.

Kang Y. J., S.K. Kim, M.Y. Kim, P. Lestari, K.H. Kim, B.K. Ha, T.H. Jun, W.J. Hwang, T. Lee, J. Lee, S. Shim, M. Y. Yoon, Y. E. Jang, K. S.Han, P. Taeprayoon, N. Yoon, P. Somt6, P. Tanya, K. S. Kim, J.G. Gwag, J.K. Moon, Y.H. Lee, B.S. Park, A. Bombarely, J. J. Doyle, S. A. Jackson, R.Schafleitner, P.Srinives, R. K. Varshney, and S.H.Lee. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5: 5443.

Kang, Y.J., D. Satyawan, S. Shim, T. Lee, J. Lee, W.J. Hwang, S. Kim, P. Lestaru, K. Laosatit, K.H. Kim, T.J. ha, A. Chitikineni, M.Y. Kim, J.M. Ko, J.G. Gwag, J.K. Moon, Y.H. Lee, B.S. park, R.K. Varshney,and S.H. Lee. 2015. Draft genome sequence of adzuki bean, Vigna angularis. Scientific Report. 5: 8069.

Kang, Y.J., T. Lee. J. Lee, S. Shim, H. Jeong, D. Satyawan, M.Y.Kim, and S.H. Lee. 2016. Translational genomics for plant breeding with genome sequence explosion. Plant Bioetchnol. J. 14: 1057-1069.

Kim, K.D., J.H. Shin, K. Van, D.H. Kim, and S.H. Lee. 2009. Dynamic re-arrangements determine genome organization and useful traits in soybean. Plant Physiol. 151:1066-1076.

Kim, S.K., R. M. Nair, J. Lee, and S.H. Lee. 2015. Genomic resource in mungbean for breeding programs. Front. Plant Sci. 6:626.

Kondrashov, F.A. and A.S. Kondrashov. 2006. Role of selection in fixation of gene duplications. J. Theor. Biol. 239: 141-151.

Kondrashov, F.A. 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. Prof. R. Soc. 279: 5048-5057.

Lestari, P., K. Van, J. Lee, Y.J. Kang, and S.H. Lee. 2013. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean. Frontiers in Plant Science. 4: 1-8.

Lestari, P., Sutrisno, and I.M. Tasma. 2014. QTL study to reveal soybean response on abiotic and biotic stresses. Jurnal Agrobiogen. 10: 109-114.

Lestari, P. and S.H. Lee. 2014. Toward the characterization a major gene for seed protein content in soybean. Proceedings of SOYCON-2014, International Soybean Research Conference on Mitigating productivity constrains in soybean for sustainable agriculture. India, 22-24 February 2014.

Liu, G. E., M. Ventura, A. Cellamare, L. Chen, Z. Cheng, B. Zhu, C. Li, J. Song, and E.E. Eichler. 2009 Analysis of recent segmental duplications in the bovine genome. BMC Genomics. 10: 571.

Lupski, J.R. 2007. An evolution revolution provides further revelation. Bioassays 29: 1182-1184.

Lynch, M. 2007. The region of genome architecture. Sunderland (MA): Sinauer Associates.

Maere, S., S. De Bodt, J. Raes, T. Casneuf, M. Van Montagu, M. Kuiper, and Y. Van de Peer. 2005. Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. USA. 102: 5454-5459.

Magadum, S. U. Banerjee, P. Murugran, D. Gangapur, and R.Ravikesavan. 2013. Gene duplication as a major force in evolution. J. Genet. 92:xx-xx.

Meehl, G.A. and T.F. Stocker. 2007. Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S. et al., eds), pp. 749-845, Cambridge University Press.

Meyers, B.C., A. Kozik, A. Griego, H.H. Kuang, and R.W. Michelmore. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Lanat. Cel .15: 1683-1689.

Mochida, K. and K. Shinozaki. 2010. Genomics and bioinformatics resources for crop improvements. Plant Cell Physiol. 51: 497-523.

Mudge J., S.B. Cannon, P. Kalo, G.E. Oldroyd, B.A. Roe, C.D. Town, and N.D. Young. 2005. Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana. BMC Plant Biol. 5:15.

Paterson, A.H., J.F. Bowers, D.G. Peterson, J.C. Estill, B.A. Chapman. 2003. Structure and evolution of cereal genomes. Curr. Opin. Genet. Dev. 13: 644-650.

Ramsey, J. 2011. From the Cover: Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci.USA. 108: 7096.

Reams, A.B. and E.L. NeidleL. 2004. Selection for gene clustering by tandem duplication. Annu. Rev. Microbiol. 58: 119-142.

Roth, J.R., N. Benson, T. Galitski, K. Haack, J.G. Lawrence, and L. Miesel. 1996. Rearrengements of the bacterial chromosome: formation and application. Eschericia coli and Salmonella: Cell. Molec. Biol. 2: 2256-2276.

Saleh, B., T. Allario, D. Dambier, P., Ollitrault, and R. Morillon. 2008 Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C. R. Biol. 331: 703-710.

Sandve, S. R., H. Rudi, T. Asp, and O.A. Rognli. 2008 Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol. Biol. 8: 245.

Satyawan, D., H. Rijzaani, and I.M. Tasma. 2014. Characterization of genomic variation in Indonesia soybean (Glycine max) varieties using next-generation sequencing. Plant Genet. Res. 12 (S1): S109-S113.

Schmutz, J., S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q.Song, J.J. J. Thelen, J. Cheng, D. Xu, U. Hellsten, G. D. May, Y.Yu, T. Sakurai, T. Umezawa, M. K. Bhattacharyya, D.Sandhu, B.Valliyodan, E. Lindquist, M. Peto, D.Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. Zhu, N.Gill, T. Joshi, M. Libault, A. Sethuraman, X. C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J.Specht, J.Grimwood, D.Rokhsar, G. Stacey, R. C. Shoemake, and S.A. Jackson. 2010.Genome sequence of the palaeopolyploid soybean. Nature. 463: 178-183.

Severin, A,J,, S,B, Cannon, M,M, Graham, D, Grant, and R.C. Shoemaker. 2011. Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell. 23: 3129-3136.

Shaner, D.L., R.B. Lindenmeyer, and M.H. Ostlie. 2012. What have the mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 68: 3-9.

Shin, J.H., K. Van, D.H. Kim, K.D. Kim, Y.E. Jang, B.S. Choi, M.Y. Kim, and S.H. Lee. 2008. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. BMC Plant Biol. 8: 133.

The AGI (Arabidopsis Genome Initiative). 2000. Analysis of the genome sequence of the flowering plant Arabidospsis thaliana. Nature. 408: 796-815.

Wang, Y., X. Wang, H. Tang, X. tan, S.P. Ficklin, F. A. Feltus, and A.H. Paterson. 2011.Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoSOne. 6: e28150.

Wang, Y., X. Wang, and A.H. Paterson. 2012. Genome and gene duplications and gene expression divergence: a view from plants. Ann.N.Y. Acad. Sci. 1256:1-14.

Wang, Y., X. Tan, and A.H. Paterson. 2013. Different patterns of gene structure divergence following gene duplication in Arabidopsis. BMC Genomics. 14: 652.

Widholm, J.M., A.R. Chinnala, J.H. Ryu, H.S. Song, T. Eggett, and J.E. Brotherton. 2001. Glyphosate selection of gene amplification in suspension cultures of 3 plant species. Physiol. Plant 112: 540-545.

Winning, H., N. Viereck, B. Wollenweber, F.H. Larsen, S. Jacobsen, I. Sondergaard, and S.B. Engelsen. 2009. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics. J. Exp. Bot. 60: 291-300.

Xu, J. H. and J. Messing. 2009 Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor. Appl. Genet. 119: 1397-1412.

Yi, G.X., X.G. Huan, Z. Yang, H.W. Min, and F.L. Jiang. 2004. Small scale duplications play a significant role in rice genome evolution. Rice Sci. 12: 173-178.

Zhang, J. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution. 18: 292-298.

Zeng, Q.Y., C.Y. Yang, Q.B. Ma, X.P. Li, W.W. Dong, and H. Nian. 2012. Identification of wild soybean miRNA and their target genes responsive to aluminum stress. BMC Plant Biol. 12: 182.

Zhou, D., J. Zhou, L. Meng, Q. Wang, H. Xie, Y. Guan, Z. Ma, Y. Zhong, F. Chen, and J. Liu. 2009 Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene. 441: 36-44.

Zhu, H.Y., S.M. Yang, F. Tang, M.Q. Gao, and H.B. Krishnan. 2010. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci.USA.107:18735-18740.

Ziolkowski, P.A., M. Kaczmarek, D. Babula-Skowronska, and J. Sadowski. 2012. Brassica genome evolution: dynamic and plasticity. In: D. Edwards, J. Batley, I.Parkin and C. Kole. Genetics, Genomics and Breeding of Oilseed of Brassicas. Sci Publ. British, UK. pp.14-17.




DOI: http://dx.doi.org/10.21082/jbio.v12n2.2016.p119-130

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


            


P-ISSN : 1907-1094
E-ISSN : 2549-1547


Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Faks.: (0251) 8338820
E-mail: jurnal.agrobiogen@gmail.com
Situs: http://biogen.litbang.pertanian.go.id



View My Stats