Utilization of Molecular Markers for Rice Breeding

Tasliah Tasliah

Abstract


Rice is the staple food for more than half of the world's population. Rice production in 2050 must increase by at least 50% to keep up with the population growth. Efforts to increase rice production continue using various strategies. Breeders apply multiple approaches including application of molecular markers in developing varieties better than the previous ones. Since the discovery of the restriction fragment length polymorphism (RFLP) markers in 1980s and the development of polymerase chain reaction (PCR) method, many types of molecular markers have been developed and applied to various crops including rice. Various molecular approaches to map genetic loci associated with rice superior traits were conducted. The mapped loci are very useful for rice breeding purposes. This paper reports the results of mapping and breeding economically important traits in rice, mainly those related to abiotic stresses, agronomic traits, yield, and yield quality. These included characters of semidwarf stature, aromatic grain, high yield potential, eating quality, higher Zn and Fe grain, more tolerant to abiotic stresses, such as salinity, drought, phosphate deficiency, Al toxicity and Fe toxicity, submergence, as well as early maturity character. The mapped characters can be transferred using marker-assisted backcrossing (MABC) method into cultivated rice genotypes well-adopted by farmers. Several countries including Indonesia have benefited from this breeding method, and Indonesia have released several rice varieties developed through MABC. These include rice varieties such as Code, Angke, Inpari 30, Inpari Blas, Inpari HDB, Bio Patenggang Agritan, and Bioni 63 Ciherang Agritan

Keywords


Rice; molecular marker; marker-assisted selection; breeding; high economic traits

Full Text:

PDF

References


Aala, Jr., W.F. & Gregorio, G.B. (2019) Morphological and molecular characterization of novel salt-tolerant rice germplasms from the Philippines and Bangladesh. Rice Science. [Online] 26 (3), 178–188. Tersedia pada: https://doi.org/10.1016/j.rsci.2018.09.001 [Diakses 3 Februari 2021].

Agarwal, M., Shrivastava, N. & Padh, H. (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports. [Online] 27, 617–631. Tersedia pada: https://doi.org/10.1007/s00299-008-0507-z [Diakses 12 Januari 2021].

Aluwihare, Y.C., Chamikara, M.D.M., Dissanayake, D.R.R.P., Dissanayake, M.D.M.I.M., Karannagoda, N.N.H., Dayananda, A.G.M.L.K., Sirisena, D.N., Samarasinghe, W.L.G., Rajapakse, R.G.S.C. & Sooriyapathirana, S.D.S.S. (2017) DNA sequence polymorphism of Pup1 linked K20-1 STS region can be effectively used in molecular breeding of rice for phosphorus deficiency tolerance. Journal of the National Science Foundation of Sri Lanka. [Online] 45 (4), 413-425. Tersedia pada: https://doi.org/10.4038/jnsfsr.v45i4.8235 [Diakses 27 Januari 2021].

Anila, M., Mahadeva Swamy, H.K., Kale, R.R., Bhadana, V.P., Anantha, M.S., Brajendra, Hajira, S.K., Balachiranjeevi, C.H., Dass, M.A., Bhaskar, S., Dilip, T., Pranathi, K., Kousik, M.B.V.N., Harika, G., Swapnil, K., Chaitra, K., Prasanna, B.L., Punniakotti, E., Sinha, P., Rekha, G., Kumar, V.A., Balachandran, S.M., Madhav, M.S., Giri, A., Viraktamath, B.C. & Sundaram, R.M. (2018) Breeding lines of the Indian mega-rice variety, MTU 1010, possessing protein kinase OsPSTOL (Pup1), show better root system architecture and higher yield in soils with low phosphorus. Molecular Breeding. [Online] 38, 147. Tersedia pada: https://doi.org/10.1007/s11032-018-0903-1 [Diakses 27 Januari 2021].

Azarin, K.V., Usatov, A.V., Alablushev, A.V., Kostylev, P.I., Makarenko, M.S. & Kovalebich, A.A. (2018) Validation of SSR markers associated with submergence tolerance in rice (Oryza sativa L.). American Journal of Agricultural and Biological Sciences. [Online] 11 (4), 142–147. Tersedia pada: https://doi.org/10.3844/ajabssp.2016.142.147 [Diakses 12 Januari 2021].

Bhuiyan, Md.A.H., Malek, M.A., Bhuiyan, S.H., Islam, M. & Hassan, A.Bt.A. (2019) Mutation determination of rice by using RAPD. International Journal of Agricultural Research, Innovation and Technology. [Online] 9 (1), 1–7. Tersedia pada: https://doi.org/10.3329/-ijarit.v9i1[Diakses 3 Februari 2021].

Borba, T.C.O., Brondani, R.P.V., Breseghello, F., Coelho, A.S.G., Mendonça, J.A., Paulo Rangel, H.N. & Brondani, C. (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genetics and Molecular Biology. [Online] 33 (3), 515–524. Tersedia pada: https://doi.org/10.1590/S1415-47572010005000065 [Diakses 12 Januari 2021].

Bosamia, T.C., Bhalani, H.N., Patel, S.V., Singh, P. & Kumar, A. (2014) Designing allele specific primers: a bioinformatics approach. Agrobios, XIII (05), 31–32.

Bradbury, L.M.T., Fitzgerald, T.L., Henry, R.J., Jin, Q. & Waters, D.L.E. (2005) The gene for fragrance in rice. Plant Biotechnology Journal. [Online] 3 (3), 363–370. Tersedia pada: https://doi.org/10.1111/j.1467-7652.2005.00131.x [Diakses 27 Januari 2021].

Cai, X.L., Liu, Q.Q., Tang, S.Z., Cu, M.H. & Wang, Z.Y. (2002) Development of molecular marker for screening the rice cultivars with intermediate amylose content in Oryza sativa subsp. indica. Journal of Plant Physiology and Molecular Biology, 28, 137–144.

Chen, J.S., Lin, S.C., Chen, C.Y., Hsieh, Y.T., Pai, P.H., Chen, L.K. & Lee, S. (2014a) Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues. BMC Research Notes, 7, 15.

Chen, H., Xie, W., He, H., Yu, H., Chen, W., Li, J., Yu, R., Yao, Y., Zhang, W., He, Y., Tang, X., Zhou, F., Deng, X.W. & Zhang, Q. (2014b) A high–density SNP genotyping array for rice biology and molecular breeding. Molecular Plant, 7 (3), 541–553.

Cheng, A., Ismail, I., Osman, M. & Hashim, H. (2012) Simple and rapid molecular techniques for identification of amylose levels in rice varieties. International Journal of Molecular Sciences. [Online] 13 (5), 6156–6166. Tersedia pada: https://doi.org/10.3390/ijms13056156 [Diakses 12 Januari 2021].

Cheon, K.S., Jeong, Y.M., Lee, Y.Y., Oh, J., Kang, D.Y., Oh, H., Kim, S.L., Kim, N., Lee, E., Baek, J., Choi, I., Kim, K.H., Won, Y.J., Yoon, I.S, Cho, Y.I., Han, J.H. & Ji, H. (2019) Kompetitive allele-specific PCR marker development and quantitative trait locus mapping for bakanae disease resistance in Korean japonica rice varieties. Plant Breeding and Biotechnology. [Online] 7 (3), 208–219. Tersedia pada: https://doi.org/10.9787/PBB.2019.7.3.208 [Diakses 12 Januari 2021].

Chin, J.H., Lu, X., Stephan, M., Haefele, S.M., Gamuyao, R., Ismail, A., Wissuwa, M. & Heuer, S. (2010) Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theoritical and Applied Genetics. [Online] 120, 1073–1086. Tersedia pada: https://doi.org/10.1007/s00122-009-1235-7 [Diakses 3 Februari 2021].

Chin, J.H., Gamuyao, R., Dalid, C., Bustamam, M., Prasetiyono, J., Moeljopawiro, S., Wissuwa, M. & Heuer, S. (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology, 156, 1202–1216.

Chrisnawati, L., Miftahudin & Utami, D.W. (2016) STS marker associated with iron toxicity tolerance in rice. The Journal of Tropical Life Science, 6 (1), 59–64.

Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. & Pang, E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. [Online] 142, 169–196. Tersedia pada: https://doi.org/1007/s10681-005-1681-5 [Diakses 3 Februari 2021].

Das, G., Patra, J.K. & Baek, K.H. (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Frontiers in Plant Science. [Online] 8, 985. Tersedia pada: https://doi.org/10.3389/fpls.2017.00985 [Diakses 27 Januari 2021].

Descalsota-Empleoa, G.I., Amparadoa, A., InabanganAsiloa, M.A., Tesoroa, F., Stangoulisc, J., Reinkea, R. & Swamya, B.P.M. (2019) Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. The Crop Journal, 7 (4), 560-572.

Dixit, S., Yadaw, R.B., Mishra, K.K., Kumar, A. (2017) Marker-assisted breeding to develop the droughttolerant version of Sabitri, a popular variety from Nepal. Euphytica. [Online] 213, 184. Tersedia pada: https://doi.org/10.1007/s10681-017-1976-3 [Diakses 27 Januari 2021].

Dixit, S., Singh, U.M., Abbai, R., Ram, T., Singh, V.K., Paul, A., Virk, P.S. & Kumar, A. (2019) Identification of genomic region(s) responsible for high iron and zinc content in rice. Scientific Reports. [Online] 9, 8136. Tersedia pada: https://doi.org/10.1038/s41598-019-43888-y [Diakses 3 Februari 2021].

Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M. & Yoshimura, A. (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development. [Online] 18, 926–936. Tersedia pada: https://doi.org/10.1101/gad.1189604 [Diakses 12 Januari 2021].

Du, X.C., Xia, M.Y., Li, J.B., Wan, B.L., Zha, Z.P. & Qi, H.X. (2009) Molecular marker-assisted selection forbreeding of restoring lines in aroma rice. Journal of Huazhong Agricultural University. [Online] 28, 651–654. Tersedia pada: https://doi.org/10.3321/j.issn:1000-2009.06.002 [Diakses 27 Januari 2021].

Du, A., Tian, W., Wei, M., Yan, W., He, H., Zhou, D., Huang, X., Li, S. & Ouyang, X. (2017). The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Molecular Plant. [Online] 10 (7), 948–961. Tersedia pada: https://doi.org/10.1016/j.molp.2017.05.006 [Diakses 3 Februari 2021].

Famoso, A.N., Zhao, K., Clark, R.T., Tung, C.W., Wright, M.H., ustamante, C., Kochian, L.V. & McCouch, S.R. (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics. [Online] 7 (8), e1002221. Tersedia pada: https://doi.org/10.1371/journal.-pgen.1002221 [Diakses 27 Januari 2021].

Fendiyanto, M.H., Satrio, R.D., Suharsono, S., Tjahjoleksono, A., Hanarida, I. & Miftahudin, M. (2019) QTL for aluminum tolerance on rice chromosome 3 based on root length characters. SABRAO Journal of Breeding and Genetics, 51 (4), 451–469.

Fujita, D., Santos, R.E., Ebron, L.A., Telebanco-Yanoria, M.J., Kato, H., Kobayashi, S., Uga, Y., Araki, E., Takai, T., Tsunematsu, H., Imbe, T., Kush, G.S., Brar, D.S., Fukuta, Y. & Kobayashi, N. (2009) Development of introgression lines of an indica-type rice variety, IR64, for unique agronomic traits and detection of the responsible chromosomal regions. Field Crops Research. [Online] 114 (2), 244–254. Tersedia pada: https://doi.org/10.1016/j.fcr.2009.08.004 [Diakses 3 Februari 2021].

Fujita, D., Santos, R.E.M., Ebron, L.A., Telebanco-Yanoria, M.J., Kato, H., Kobayashi, S., Uga, Y., Araki, E., Takai, T., Tsunematsu, H., Imbe, T., Khush, G.S., Brar, D.S., Fukuta, Y. & Kobayashi, N. (2010) haracterization of introgression lines for yield-related traits with indicatype rice variety IR64 genetic background. Japan Agricultural Research Quarterly. [Online] 44 (1), 277–290. Tersedia pada: https://doi.org/10.6090/jarq.44.277[Diakses 12 Januari 2021].

Fujita, D., Tagle, A.G., Ebron, L.A., Fukuta, Y. & Kobayashi. N. (2012) Characterization of near-isogenic lines carrying QTL for high spikelet number with the genetic background of an indica rice variety IR64 (Oryza sativaL.). Breeding Science. [Online] 62 (1), 18–26. Tersedia pada: https://doi.org/10.1270/jsbbs.62.18 [Diakses 3 Februari 2021].

Fujita, D., Koide, Y. & Kobayashi, N. (2018) Genetic dissection of agronomic traits in introgression lines and improvement of an elite indica rice variety. Japan Agricultural Research Quarterly. [Online] 55 (2), 91–103. Tersedia pada: https://doi.org/10.6090/jarq.52.91 [Diakses 3 Februari 2021].

Garcia-Oliveira, A.L., Tan, L., Fu, Y. & Sun, C. (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. Journal of Integrative Plant Biology. [Online] 51 (1), 84–92. Tersedia pada: https://doi.org/10.1111/j.1744-7909.2008.00730.x [Diakses 12 Januari 2021]. Hami-Seno, D.S., Zainal Hasan, A.E., Santoso, T.J., Kusbiantoro, B. & Mas’ud, Z.A. (2011) Identifikasi gen aroma pada progeni-progeni backcross antara varietas Ciherang dengan Pandanwangi. Jurnal Ilmu Pertanian Indonesia, 16 (2), 136–141.

Hasan, M.M., Rafii, M.Y., Ismail, M.R., Mahmood, M., Rahim, H.A., Alam, Md.A., Ashkani, S., Malek, Md.A. & Latif, M.A. (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnology & Biotechnological Equipment. [Online] 29 (2), 237–254. Tersedia pada: https://doi.org/10.1080/13102818.2014.995920 [Diakses 12 Januari 2021].

Jairin, J., Teangdeerith, S., Leelagud, P., Kothcharerk, J., Sansen, K., Yi, M., Vanavichit, A. & Toojinda, T. (2008) Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristic through marker-assisted selection. Field Crops Research. [Online] 110 (3), 263–271. Tersedia pada: https://doi.org/10.1016/j.fcr.2008.09.00 [Diakses 12 Januari 2021].

Jena, K.K., Khush, G.S. & Koehert, G. (1992) RFLP analysis of rice (Oryza sativa L.) introgression lines. Theoretical and Applied Genetics, 84, 608-616.

Karami, N., Aalamib, A., Lahijic, H.S., Rabieid, B. & Alahgholipoure, M. (2016) Analysis and comparison of fragrant gene sequence in some rice cultivars. Genetika. [Online] 48 (2), 597–607. Tersedia pada: https://doi.org/10.2298/GENSR1602597K [Diakses 3 Februari 2021].

Khush, G.S. (2001) Green revolution: the way forward. Nature Reviews Genetics. [Online] 2, 815–822. Tersedia pada: https://doi.org/10.1038/35093585 [Diakses 12 Januari 2021].

Kim, S.I. & Tai, T.H. (2013) Identification of SNPs in closely related temperate japonica rice cultivars using restriction enzyme-phased sequencing. PLoS One, 8(3), e60176.

Kim, W.Y., Hicks, K.A. & Somers, D.A. (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiology. [Online] 139, 1557–1569. Tersedia pada: https://doi.org/10.1104/pp.105.067173 [Diakses 12 Januari 2021].

Kim, C.K., Yoon, U.H., Lee, G.S., Lee, H.K., Kim, Y.H. & Hahn, J.H. (2009) Rice genetic marker database: n identification of single nucleotide polymorphism (SNP) and quantitative trait loci (QTL) markers. African Journal of Biotechnology, 8 (13), 2963–2967.

Kim, M.S., Yang, J.Y., Yu, J.K., Lee, Y., Park, Y.J. & Kang, K.K. (2021) Breeding of high cooking and eating quality in rice by marker-assisted backcrossing (MABC) using KASP markers. Plants. [Online] 10, 804. Tersedia pada: https://doi.org/10.3390/plants10040804 [Diakses 3 Februari 2021].

Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T. & Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under shortday conditions. Plant Cell Physiology. [Online] 43, 1096–1105. Tersedia pada: https://doi.org/10.1093/pcp/pcf156 [Diakses 12 Januari 2021].

Krishnamurthy, S.L., Pundir, P., Warraich, A.S., Rathor, S., Lokeshkumar, B.M., Singh, N.K. & Sharma, P.C. (2020) Introgressed Saltol QTL lines improves the salinity tolerance in rice at seedling stage. Frontiers in Plant Science. [Online] 11, 833. Tersedia pada: https://doi.org/10.3389/fpls.2020.00833 [Diakses 3 Februari 2021].

Kumbhar, S.D., Patil, J.V., Kulwal, P.L. & Chimote, V.P. (2013) Molecular diversity in rice (Oryza sativa L.) using ISSR markers. International Journal of Integrative Sciences, Innovation and Technology, 2 (2), 17–23.

Lang, N.T. & Buu, B.C. (2006) Mapping QTLs for phosphorus eficiency tolerance in rice (Oryza sativa. L). Omonrice, 14, 1–9.

Lang, N.T., Li, Z. & Buu, B.C. (2001) Microsatellite markers linked to salt tolerance in rice. Omonrice, 9, 9–21.

Lestari, P & Koh, J. (2013) Development of new CAPS/dCAPS and SNAP markers for rice eating quality. Hayati. [Online] 20 (1), 15–23. Tersedia pada: https://doi.org/10.4308/hjb.20.1.15 [Diakses 27 Januari 2021].

Lestari, P., Utami, D.W., Rosdianti, I. & Sabran, M. (2016) Morphological variability of Indonesian rice germplasm and the associated SNP markers. Emirates Journal of Food and Agriculture. [Online] 28 (9), 660–670. Tersedia pada: https://doi.org/10.9755/ejfa.2016-03-319 [Diakses 27 Januari 2021].

Li, X., Wang, R.R., Larson, S.R. & Chatterton, N.J. (2001) Development of a STS marker assay for detecting loss of heterozygosity in rice hybrids. Genome. [Online] 44 (1), 23–26. Tersedia pada: https://doi.org/10.1139/gen44-1-23 [Diakses 12 Januari 2021].

Lin, M.H., Lin, C.W., Chen, J.C., 2, Lin, Y.C., Cheng, S.Y., Liu. T.H., Jan, F.J., Wu, S.T., Thseng, F.S. & Ku, H.M. (2007) Tagging rice drought-related QTL with SSR DNA markers. Crop, Environment & Bioinformatics, 4, 65–76.

Linh, L.H., Linh, T.H., Xuan, T.D., Ham, L.H., Ismail, A.M. & Khanh, T.D. (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. International Journal of Plant Genomics. [Online] 2012, 949038. Tersedia pada: https://doi.org/10.1155/2012/949038 [Diakses 12 Januari 2021].

Liu, C., Chen, K., Zhao, X., Wang, X., Shen, C., Zhu, Y., Dai, M., Qiu, X., Yang, R., Xing, D., Pang, Y. & Xu, J. (2019) Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice. [Online] 12, 88. Tersedia pada: https://doi.org/10.1186/s12284-019-0349-z [Diakses 27 Januari 2021].

Lubba, K.M., Fatimah, J. Prasetiyono & D. Saptadi (2020) Agronomic characterization and background selection of BC3F1 Inpari 30 × Cabacu rice lines using SSR markers for drought and submergence tolerance. SABRAO Journal of Breeding and Genetics, 52 (1), 17–29.

Luo, Y. & Yin, Z. (2013) Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergencetolerance and disease resistance to rice blast and bacterial blight. Molecular Breeding, 32, 709–721.

Luo, Y., Zakaria, S., Basyah, B., Ma, T., Li, Z., Yang, J. & Yin, Z. (2014) Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phenotype good grain quality and disease resistance to bacterial blight. Rice. [Online] 7, 33. Tersedia pada: https://doi.org/10.1186/s12284-014-0033-2 [Diakses 3 Februari 2021].

Luong, N.H., Jeon, Y.A., Shim, K.C., Kim, S., Lee, H.S., Adeva, C., Thi, V.A.D. & Ahn, S.N. (2019) Characterization of the spikelet number per panicle QTL qSPP7 using a nearly isogenic line derived from an interspecific cross in rice. Plant Breeding and Biotechnlogy. [Online] 7 (3), 245–256. Tersedia pada: https://doi.org/10.9787/PBB.2019.7.3.245 [Diakses 12 Januari 2021].

Mahender, A., Swamy, B.P.M., Anandan, A. & Ali, J. (2019) Tolerance of iron-deficient and-toxic soil conditions in rice. Plants. [Online] 8 (2), 31. Tersedia pada: https://doi.org/10.3390/plants8020031 [Diakses 3 Februari 2021].

Matsubara, K., Kono, I., Hori, K., Nonoue, Y., Ono, N. & Shomura, A. (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theoretical and Apllied Genetics. [Online] 117, 935–945. Tersedia pada: https://doi.org/10.1007/s00122-008-0833-0 [Diakses 12 Januari 2021].

McCouch, S.R., Teytelman, L., Xu, Y., Lobos, K.B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y.,Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D. & Stein, L. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research. [Online] 9, 199–207. Tersedia pada: https://doi.org/10.1093/dnares/9.6.199 [Diakses 27 Januari 2021].

McCouch, S.R., Zhao, K., Wright, M., Tung, C.W., Ebana, K., Thomson, M., Reynolds, A., Wang, D., DeClerck, G., Ali, Md.L., McClung, A., Eizenga, G. & Bustamante, C. (2010) Review development of genome-wide SNP assays for rice. Breeding Science. [Online] 60, 524–535. Tersedia pada: https://doi.org/10.1270/jsbbs.60.524 [Diakses 12 Januari 2021].

Meng, L., Wang, B., Zhao, X., Kimberly, P., Qian, Q. & Ye, G. (2017) Association mapping of ferrous, zinc, and aluminum tolerance at the seedling stage in indica rice using MAGIC populations. Frontiers in Plant Science. [Online] 8, 1822. Tersedia pada: https://doi.org/10.3389/fpls.2017.01822 [Diakses 27 Januari 2021].

Naqvi, N.I. & Cahattoo, B.B. (1996) Development of asequence characterized amplified region (SCAR)based indirect selection method for a dominant blastresistance gene in rice. Genome. [Online] 39 (1), 26–30. Tersedia pada: https://doi.org/10.1139/g96-004 [Diakses 12 Januari 2021].

Neeraja, C.N, Rodriguez, R.M., Pamlona, A., Heuer, S., Collard, B.C.Y., Septiningsih, E.M., Vergara, G., Sanches, D., Xu, K., Ismail, A.M. & Mackill, D.J. (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theoritical and Applied Genetics. [Online] 115, 767–776. Tersedia pada: https://doi.org/10.1007/s00122-007-0607-0 [Diakses 12 Januari 2021].

Nguyen, V.T., Nguyen, B.D., Sarkarung, S., Martinez, C., Paterson, A.H. & Nguyen, H.T. (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Molecular Genetics and Genomics. [Online] 267, 772–780. Tersedia pada: https://doi.org/10.1007/s00438-002-0686-1 [Diakses 12 Januari 2021].

Paran, I. & Michelmore, R.W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoritical and Applied Genetics. [Online] 85, 985–993. Tersedia pada: https://doi.org/10.1007/BF00215038 [Diakses 12 Januari 2021].

Pariasca-Tanaka, J., Chin, J.H., Dramé, K.N., Dalid, C., Heuer, S. & Wissuwa, M. (2014) A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice (Oryza glaberrima Steud) and its distribution in the genus Oryza. Theoretical and Applied Genetics. [Online] 127, 1387–1398. Tersedia pada: https://doi.org/10.1007/s00122-014-2306-y [Diakses 27 Januari 2021].

Peng, S., Cassman, K.G., Virmani, S.S., Sheehy, J. & Khush, G.S. (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge ofincreasing rice yield potential. Crop Science, 39, 1552–1559.

Peng, S., Khush, G.S., Virk, P., Tang, Q. & Zou, Y. (2008) Progress in ideotype breeding to increase rice yield potential. Field Crops Research. [Online] 108 (1), 32–38. Tersedia pada: https://doi.org/10.1016/j.fcr.2008.04.001 [Diakses 12 Januari 2021].

Ponce, K.S., Ye, G. & Zhao, Q. (2018) QTL identification for cooking and eating quality in indica rice using multiparent advanced generation intercross (MAGIC) population. Frontiers in Plant Science. [Online] 9, 868. Tersedia pada: https://doi.org/10.3389/fpls.2020.00342 [Diakses 3 Februari 2021].

Pradhan, S.K., Pandit, E., Pawar, S., Naveenkumar, R., Barik, S.R., Mohanty, S.P., Nayak, D.K., Ghritlahre, S.K., Rao, D.S., Reddy, J.N. & Patnaik, S.S.C. (2020) Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biology. [Online] 20, 57. Tersedia pada: https://doi.org/10.1186/s12870-020-2262-4 [Diakses 2 Februari 2021].

Prasetiyono, J., Suhartini, T., Soemantri, I.H., Tasliah, Moeljopawiro, S., Aswidinnoor, H., Sopandie, D. & Bustamam, M. (2012) Evaluasi beberapa galur-Pup1 tanaman padi (Oryza sativa L.) pada larutan hara dan lapangan. Jurnal Agronomi Indonesia, 40 (2), 83–90.

Prasetiyono, J., Tasliah, Ma’sumah & Trijatmiko, K.R. (2018) Ekspresi di lapang galur-galur BC1F4 dan BC2F3 persilangan Code × Nil-qTSN4 dan Nil-qDTH8 untuk perbaikan potensi hasil. Dalam: Zarwazi et al. (editor) Prosiding Seminar Nasional 2017 (Buku 1). Sukamandi, Balai Besar Penelitian Tanaman Padi, hlm. 521–524.

Rana, Md.M., Takamatsu, T., Baslam, M., Kaneko, K., Itoh, K., Harada, N., Sugiyama, T., Ohnishi, T., Kinoshita, T., Takagi, H. & Mitsui, T. (2019) Salt tolerance improvement in rice through efficient SNP arkerassisted selection coupled with speed-breeding. International Journal of Molecular Science. [Online] 20, 2585. Tersedia pada: https://doi.org/10.3390/ijms20102585 [Diakses 3 Februari 2021].

Rao, Y., Yuanyuan L. & Qian, Q. (2014) Recent progress on molecular breeding of rice in China. Plant Cell Reports. [Online] 33 (4), 551–564. Tersedia pada: https://doi.org/10.1007/s00299-013-1551-x [Diakses 12 Januari 2021].

Roy, S.C. & Lachagari, V.B.R. (2017) Assessment of SNP and InDel variations among rice lines of Tulaipanji × Ranjit. Rice Science. [Online] 24 (6), 336–348. Tersedia pada: https://doi.org/10.1016/j.rsci.2017.01.003 [Diakses 27 Januari 2021].

Sahebi, M., Hanafi, M.M., Rafii, M.Y., Mahmud, T.M.M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G. & Atabaki, N. (2018) Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. BioMed Research International. [Online] 2018, 3158474. Tersedia pada: https://doi.org/10.1155/2018/3158474 [Diakses 27 Januari 2021].

Sasaki, K., Fujita, D., Koide, Y., Lumanglas, P.D., Gannaban, R.B., Tagle, A.G., Obara, M., Fukuta, Y., Kobayashi, N. & Ishimaru, T. (2017) Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant type rice and evaluation of a nearisogenic line for grain productivity. Journal of Experimental Botany. [Online] 68 (11), 2693–2702. Tersedia pada: https://doi.org/10.1093/jxb/erx128 [Diakses 12 Januari 2021].

Seno, D.S.H., Padmadi, B., Praptiwi, D., Sugihartati, Taufiq, Fatahajudin, M.T., Al Anshary, H.R., Santoso, T.J. & Mas’ud, Z.A. (2011) Transfer gen Badh2 termutasi varietas aromatik Mentik Wangi ke varietas nonaromatik Ciherang. Jurnal Ilmu Pertanian Indonesia, 16 (1), 65–70.

Septiningsih, E.M., Hidayatun, N., Sanchez, D.L., Nugraha, Y., Carandang, J., Pamplona, A.M., Collard, B.C.Y., Ismail, A.M. & Mackill, D.J. (2014) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica. [Online] 202, 259–268. Tersedia pada: https://doi.org/10.1007/s10681-014-1287-x [Diakses 12 Januari 2021].

Shabir, G., Aslam, K., Khan, A.R., Shahid, M., Manzoor, H., Noreen, S., Khan, M.A., Baber, M., Sabar, M., Shah, S.M. & Arif, M. (2017) Rice molecular markers and genetic mapping: current status and prospects. Journal of Integrative Agriculture. [Online] 16 (9), 1879–1891. Tersedia pada: https://doi.org/10.1016/S2095-(16)61591-5 [Diakses 27 Januari 2021].

Shamsudin, N.A.A., Swamy, B.P.M., Ratnam, W., Cruz, M.T.S., Raman, A. & Kumar, A. (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics. [Online] 17, 30. Tersedia pada: https://doi.org/10.1186/s12863-016-0334-0 [Diakses 12 Januari 2021].

Sikirou, M., Saito, K., Achigan-Dako, E.G., Dramé, K.N., Adam, A. & Venuprasad, R. (2015) Genetic improvement of iron toxicity tolerance in rice progress, challenges and prospects in West Africa. Plant Production Science. [Online] 18 (4), 423–434. Tersedia pada: https://doi.org/10.1626/pps.18.423 [Diakses 12 Januari 2021].

Spielmeyer, W., Ellis, M.H. & Chandler, P.M. (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America. [Online] 99 (13), 9043–9048. Tersedia pada: https://doi.org/10.1073/pnas.132266399 [Diakses 12 Januari 2021].

Srivastava, D., Shamim, Md., Mishra, A., Yadav, P., Kumar, D., Pandey, P., Khan, N.A. & Singh, K.N. (2019) Introgression of semi-dwarf gene in Kalanamak rice using marker-assisted selection breeding. Current Science. [Online] 116 (4), 597–603. Tersedia pada: https://doi.org/10.18520/cs/v116/i4/597-603 [Diakses 12 Januari 2021].

Tasliah (2019) Perbaikan potensi hasil varietas Code melalui silang balik dengan bantuan marka molekuler: uji multilokasi (UML). Laporan Akhir ROPP TA 2018. Bogor, Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian, Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.

Tasliah, Ma’sumah, Trijatmiko, K.R. & Prasetiyono, J. (2015) Analisis molekuler dan keragaan agronomis galur-galur padi BC1F1 persilangan Code × qTSN4 dan Code × qDTH8. Jurnal AgroBiogen. [Online] 1 (1), 17–24. Tersedia pada: https://doi.org/10.21082/jbio.v11n1.2015.p17-24 [Diakses 12 Januari 2021].

Tasliah, Ma’sumah & Prasetiyono, J. (2019) Analisis molekuler dan uji adaptasi galur-galur padi CodeqTSN4 dan Code-qDTH8. Jurnal AgroBiogen. [Online]15 (1), 11–22. Tersedia pada: https://doi.org/10.21082/jbio.v15n1.2019.p11-22 [Diakses 12 Januari 2021].

Tasliah, Ma’sumah & Prasetiyono, J. (2020) Uji daya hasil lanjutan dua puluh tujuh galur padi Code-qTSN4 dan Code-qDTH8. Jurnal Biologi Indonesia. [Online] 16 (1), 67–79. Tersedia pada: https://doi.org/10.14203/jbi.v16i1.3884 [Diakses 12 Januari 2021].

Tomita, M. & Ishii, K. (2018) Genetic performance of the emidwarfing allele sd1 derived from a japonica rice cultivar and minimum requirements to detect its singlenucleotide polymorphism by MiSeq whole-genome sequencing. Hindawi BioMed Research International. [Online] 2018, 4241725. Tersedia pada: https://doi.org/10.1155/2018/4241725 [Diakses 3 Februari 2021].

Trijatmiko, K.R. (2014) Aplikasi marka molekuler untuk pencarian lokasi gen pengendali komponen hasil dan perbaikan potensi hasil tanaman padi. Laporan RPTP TA 2013. Bogor, Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian, Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian.

Trijatmiko, K.R., Supriyanta, Prasetiyono, J., Thomson, M.J., Cruz, C.M.V., Moeljopawiro, S. & Pereira, A. (2014) Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Molecular Breeding. [Online] 34, 283–295. Tersedia pada: https://doi.org/10.1007/s11032-013-0012-0 [Diakses 12 Januari 2021].

Utami, S., Widyastuti, U., Utami, D.W., Rosdianti, I. & Lestari, P. (2017) Molecular marker-assisted selection of rice grain quality on rice (Oryza sativa L.) lines tolerant to Fe toxicity stress. The Journal of Tropical Life Science. [Online] 7 (3), 268–276. Tersedia pada: https://doi.org/10.11594/jtls.07.03.13 [Diakses 27 Januari 2021].

Wanchana, S., Kamolsukyunyong, W., Ruengphayak, S., Toojinda, T., Tragoonrung, S. & Vanavichit, A. (2005) A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning. ScienceAsia. [Online] 31, 299–306. Tersedia pada: https://doi.org/10.2306/scienceasia1513-1874.2005.31.299 [Diakses 12 Januari 2021].

Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H. & Wan, J. (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology. [Online] 153 (4), 1747–1758. Tersedia pada: https://doi.org/10.1104/pp.110.156943 [Diakses 27 Januari 2021].

Wissuwa, M., Yano, M. & Ae, N. (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 97, 777–783.

Wu, L.B., Shhadi, Md.S., Gregorio, G., Matthus, E., Becker, M. & Frei, M. (2014) Genetic and physiological analysisof tolerance to acute iron toxicity in rice. Rice. [Online] 7, 8. Tersedia pada: https://doi.org/10.1186/s12284-014-0008-3 [Diakses 3 Februari 2021].

Xiang, C., Qu, L.J., Gao, Y.M. & Shi, Y.Y. (2013) Flower development and photoperiodic control of flowering in rice. Rice Science, 20 (2), 79–87.

Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X. & Zhang, Q. (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics. [Online] 40, 761–767. Tersedia pada: https://doi.org/10.1038/ng.143 [Diakses 12 Januari 2021].

Yonemaru, J., Yamamoto, T., Fukuoka, S., Uga, Y., Hori, K. & Yano, M. (2010) Q-TARO: QTL annotation rice online database. Rice, 3, 194–203.

Yu, H., Xie, W., Li, J., Zhou, F. & Zhang. Q. (2014) A wholegenome SNP array (RICE 6K) for genomic breeding in rice. Plant Biotechnology Journal. [Online] 12 (1), 28–37. Tersedia pada: https://doi.org/10.1111/pbi.12113 [Diakses 3 Februari 2021].

Zhang, J., Chen, K., Pang, Y., Naveed, S.A., Zhao, X., Wang, X., Wang, Y., Dingkuhn, M., Pasuquin, J., Li, Z. & Xu, J. (2017) QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC Genomics. [Online] 18, 828. Tersedia pada: https://doi.org/10.1186/s12864-017-4221-5 [Diakses 3 Februari 2021].

Zhang, A., Gao, Y., Li, Y., Ruan, B., Yang, S., Liu, C., Zhang, B., Jiang, H., Fang, G., Ding, S., Jahan, N., Xie, L., Dong, G., Xu, Z., Gao, Z., Guo, L. & Qian, Q. (2020) Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency. Frontiers in Plant Science. [Online] 11, 342. Tersedia pada: https://doi.org/10.3389/fpls.2020.00342 [Diakses 3 Februari 2021].

Zhu, J., Gale, M.D., Quarrie, S., Jackson, M.T. & Bryan, G.J. (1998) AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics, 96, 602–611.




DOI: http://dx.doi.org/10.21082/jbio.v17n1.2021.p45-62

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

         

P-ISSN : 1907-1094
E-ISSN : 2549-1547


Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Call Center: 08211181677
Faks.: (0251) 8338820
E-mail: jurnal.agrobiogen@gmail.com
Situs: http://biogen.litbang.pertanian.go.id



View My Stats