Genome-Edited Plants and the Challenges of Regulating Their Biosafety in Indonesia

nFN Bahagiawati, Dani Satyawan, Tri J. Santoso


Genome editing is a precise breeding technique to improve plant properties by editing specific genes that regulate desired trait. Genome editing techniques can be designed so that the resulting plant does not contain foreign genes and the resulting changes in DNA sequences cannot be distinguished from products obtained by conventional gene mutations which have been considered as safe and therefore unregulated. Thus, genome editing products in some countries are also not specifically regulated as GM products even though their assembly process uses recombinant DNA and genetic transformation. Brazil, like
Indonesia ratified the Cartagena Protocol, but it issued a special  regulation that provides dispensation for several types of genome editing products and exempts them from regulations that apply to transgenic plants. The steps taken by other countries in regulating genome editing products can be taken into consideration in drafting regulations in Indonesia, in order to create a conducive environment that supports the use of this potential technology while at the same time provides assurance regarding its safety to human health and the environment. The purpose of this review was to provide information on
the development of genome editing technologies in plant breeding, analyze its risks compared to that of conventional breeding, and compare its biosafety regulation in various countries to provide some considerations for drafting regulations on the risk assessment of genome editing products in Indonesia, as a ratifying country of the Cartagena Protocol.


Genome editing; CRISPR/Cas9; biosafety; variety release regulation.

Full Text:



Abdallah, N.A., Prakash, C.S. & McHughen, A.G. (2015) Genome editing for crop improvement: Challenges and opportunities. GM Crops & Food. [Online] 6 (4), 183–205. Available from: doi:10.1080/21645698.2015.1129937 [Accessed 30 August 2019].

Allard, R.W. (1999) Principles of plant breeding. [e-book] New York, John Wiley & Sons. Available from: breeding%22 genetic segregation&f=false [Accessed 28 August 2019].

Amirhusin, B. (2004) Perakitan tanaman transgenik tahan hama. Jurnal Litbang Pertanian, 23 (1), 1–7.

BB Biogen (2018) Laporan kinerja Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian 2017. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian. Bogor, BB Biogen.

Beetham, P.R., Kipp, P.B., Sawycky, X.L., Arntzen, C.J. & May, G.D. (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proceedings of the National Academy of Sciences of the United States of America. [Online] 96 (15), 8774–8778. Available from: doi:10.1073/pnas.96.15.8774 [Accessed 13 May 2019].

Belhaj, K., Chaparro-Garcia, A., Kamoun, S. & Nekrasov, V. (2013) Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. [Online] 9 (1), 39. Available from: doi:10.1186/1746-4811-9-39 [Accessed 27 May 2019].

Bogdanove, A.J., Donovan, D.M., Elorriaga, E., Kuzma, J., Pauwels, K., Strauus, S.H. & Voytas, D.F. (2018) Genome editing in agriculture: Methods, applications and governance. CAST Issue Paper, 60.

Bortesi, L. & Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances. [Online] 33 (1), 41–52. Available from: doi:10.1016/J.BIOTECHADV.2014.12.006 [Accessed 13 May 2019].

Budiani, A., Putranto, R.A., Riyadi, I., Sumaryono, Minarsih, H. & Faizah, R. (2018) Transformation of oil palm calli using CRISPR/Cas9 system: Toward genome editing of oil palm. IOP Conference Series: Earth and Environmental Science. [Online] 183 (1). Available from: doi:10.1088/1755-1315/183/1/012003 [Accessed 13 May 2019].

Camacho, A., Van Deynze, A., Chi-Ham, C. & Bennett, A.B. (2014) Genetically engineered crops that fly under the US regulatory radar. Nature Biotechnology. [Online] 32 (11), 1087–1091. Available from: doi:10.1038/nbt.3057 [Accessed 4 April 2019].

Chin, J.H., Gamuyao, R., Dalid, C., Bustamam, M., Prasetiyono, J., Moeljopawiro, S., Wissuwa, M. & Heuer, S. (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology. [Online] 156 (3), 1202–1216. Available from: doi:10.1104/pp.111.175471 [Accessed 28 March 2019].

Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S. & Kim, J.S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research. [Online] 24 (1), 132–141. Available from: doi:10.1101/gr.162339.113 [Accessed 29 March 2019].

Cohen, J. (2019) Fields of dreams. Science. [Online] 365 (6452), 422–425. Available from: doi:10.1126/science.365.6452.422 [Accessed 4 September 2019].

Convention on Biological Diversity (2018) Parties to the Cartagena protocol and its supplementary protocol on liability and redress. [Online] Available from: [Accessed 4 April 2019].

Cressey, D. (2013) Transgenics: A new breed. Nature. [Online] 497 (7447), 27–29. Available from: doi:10.1038/497027a [Accessed 4 April 2019].

Curtin, S.J., Anderson, J.E., Starker, C.G., Baltes, N.J., Mani, D., Voytas, D.F. & Stupar, R.M. (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. In: Rose, R. (ed.) Legume genomics. Methods in Molecular Biology (Methods and Protocols), vol. 1069. [e-book] Totowa, N.J., Humana Press, pp. 25–42. Available from: doi:10.1007/978-1-62703-613-9_3 [Accessed 13 May 2019].

Duensing, N., Sprink, T., Parrott, W.A., Fedorova, M., Lema, M.A., Wolt, J.D. & Bartsch, D. (2018) Novel features and considerations for ERA and regulation of crops produced by genome editing. Frontiers in Bioengineering and Biotechnology. [Online] 6, 79. Available from: doi:10.3389/fbioe.2018.00079 [Accessed 13 May 2019].

Eckerstorfer, M.F., Engelhard, M., Heissenberger, A., Simon, S. & Teichmann, H. (2019) Plants developed by new genetic modification techniques—Comparison of existing regulatory frameworks in the EU and non-EU countries. Frontiers in Bioengineering and Biotechnology. [Online] 7, 26. Available from: doi:10.3389/fbioe.2019.00026 [Accessed 13 May 2019].

Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K. & Sander, J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology. [Online] 31 (9), 822–826. Available from: doi:10.1038/nbt.2623 [Accessed 29 March 2019].

Hartung, F. & Schiemann, J. (2014) Precise plant breeding using new genome editing techniques: Opportunities, safety and regulation in the EU. The Plant Journal. [Online] 78 (5), 742–752. Available from: doi:10.1111/tpj.12413 [Accessed 28 March 2019].

Haslberger, A.G. (2003) Codex guidelines for GM foods include the analysis of unintended effects. Nature Biotechnology. [Online] 21 (7), 739–741. Available from: doi:10.1038/nbt0703-739 [Accessed 29 August 2019].

Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F. & Zhang, F. (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal. [Online] 12 (7), 934–940. Available from: doi:10.1111/pbi.12201 [Accessed 24 May 2019].

Hope, C. (2013) Major GM food company Monsanto ‘pulls out of Europe’. The Telegraph. [Online] Available from: [Accessed 9 April 2019].

Hsu, P.D., Lander, E.S. & Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell. [Online] 157 (6), 1262–1278. Available from: doi:10.1016/J.CELL.2014.05.010 [Accessed 28 August 2019].

Ika (2019) Mengenal CRISPR/Cas9, teknik baru pemuliaan tanaman. [Online] Tersedia pada: [Diakses 1 Desember 2019].

James, C. (2017) Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief 53. Ithaca, N.Y., ISAAA.

Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F.F., Jones, J.B. & Wang, N. (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal. [Online] 15 (7), 817–823. Available from: doi:10.1111/pbi.12677 [Accessed 24 May 2019].

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. & Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research. [Online] 41 (20), e188. Available from: doi:10.1093/nar/gkt780 [Accessed 13 May 2019].

Jones, H.D. (2015) Future of breeding by genome editing is in the hands of regulators. GM Crops & Food. [Online] 6 (4), 223–232. Available from: doi:10.1080/21645698.2015.1134405 [Accessed 30 August 2019].

Kleinstiver, B.P., Pattanayak, V., Prew M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z. & Joung, J.K. (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. [Online] 529 (7587), 490–495. Available from: doi:10.1038/nature16526 [Accessed 29 March 2019].

Kok, E.J., Glandorf, D.C.M., Prins, T.W. & Visser, R.G.F. (2019) Food and environmental safety assessment of new plant varieties after the European Court decision: Process-triggered or product-based? Trends in Food Science & Technology. [Online] 88, 24–32. Available from: doi:10.1016/J.TIFS.2019.03.007 [Accessed 28 August 2019].

Kuzma, J. & Kokotovich, A. (2011) Renegotiating GM crop regulation. EMBO Reports. [Online] 12 (9), 883–888. Available from: doi:10.1038/embor.2011.160 [Accessed 30 August 2019].

Lusser, M., Parisi, C., Rodriguez Cerezo, E. & Plan, D. (2011) New plant breeding techniques: state-of-the-art and prospects for commercial development. [Online] Publications Office of the European Union. EUR Scientific and Technical Research Reports. Available from: doi:10.2791/54761 [Accessed 30 August 2019].

Marchant, G.E. & Stevens, Y.A. (2015) A new window of opportunity to reject process-based biotechnology regulation. GM Crops & Food. [Online] 6 (4), 233–242. Available from: doi:10.1080/21645698.2015.1134406 [Accessed 30 August 2019].

McDougall, P. (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. [Online] Available from: [Accessed 30 August 2019].

Muller, H.J. (1927) Artificial transmutation of the gene. Science. [Online] 66, 84–87. Available from: doi:10.2307/1651551 [Accessed 9 April 2019].

Nassar, N.M.A. & Ortiz, R. (2007) Cassava improvement: Challenges and impacts. The Journal of Agricultural Science. [Online] 145 (02), 163. Available from: doi:10.1017/S0021859606006575 [Accessed 29 March 2019].

National Biosafety Technical Commission (2018) National Biosafety Technical Commission normative resolution no. 16, of January 15, 2018. [Online] Available from: [Accessed 4 April 2019].

National Research Council (2004) Safety of genetically engineered foods: Approaches to assessing unintended health effects. Washington, D.C., National Academies Press.

Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N. & Solano, R. (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal. [Online] 17 (3), 665–673. Available from: doi:10.1111/pbi.13006 [Accessed 4 April 2019].

Pathirana, R. (2011) Plant mutation breeding in agriculture. Plant Sciences Reviews. Oxfordshire, UK, CAB International.

Pioneer (2016) DuPont announces intentions to commercialize first CRISPR-Cas product: Press release. [Online] Available from: about/news-media/news-releases/template.CONTENT/guid.1DB8FB71-1117-9A56-E0B6-3EA6F85AAE92 [Accessed 8 November 2018].

Podevin, N., Davies, H.V., Hartung, F., Nogué, F. & Casacuberta, J.M. (2013) Site-directed nucleases: A paradigm shift in predictable, knowledge-based plant breeding. Trends in Biotechnology. [Online] 31 (6), 375–383. Available from: doi:10.1016/j.tibtech.2013.03.004 [Accessed 4 April 2019].

Puchta, H. & Fauser, F. (2013) Gene targeting in plants: 25 years later. The International Journal of Developmental Biology. [Online] 57 (6-7–8), 629–637. Available from: doi:10.1387/ijdb.130194hp [Accessed 13 May 2019].

Purnhagen, K.P., Kok, E., Kleter, G., Schebesta, H., Visser, R.G.F. & Wesseler, J. (2018) EU court casts new plant breeding techniques into regulatory limbo. Nature Biotechnology. [Online] 36 (9), 799–800. Available from: doi:10.1038/nbt.4251 [Accessed 29 March 2019].

Qi, Y., Li, X., Zhang, Y., Starker, C.G., Baltes, N.J., Zhang, F., Sander, J.D., Reyon, D., Joung, J.K. & Voytas, D.F. (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3: Genes, Genomes, Genetics. [Online] 3 (10), 1707–1715. Available from: doi:10.1534/g3.113.006270 [Accessed 13 May 2019].

Rodríguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E. & Lippman, Z.B. (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell. [Online] 171 (2), 470-480.e8. Available from: doi:10.1016/J.CELL.2017.08.030 [Accessed 24 May 2019].

Santoso, T.J. (2015) CRISPR, teknologi pengeditan genom terarah untuk pengembangan tanaman non-transgenik. Warta Biogen, 11 (2), 9–12.

Santoso, T.J. et al. (2016) Introduksi konstruk CRISPR-Cas9/Gen GA20 Ox-2 ke padi dan identifikasi mutan-mutan padi melalui analisis molekuler dan sekuensing. Laporan Akhir Penelitian TA 2016. Bogor, BB Biogen.

Scheben, A. & Edwards, D. (2018) Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology. [Online] 19 (1). Available from: doi:10.1186/s13059-018-1555-5 [Accessed 24 May 2019].

Schinkel, H. & Schillberg, S. (2016) Genome editing: Intellectual property and product development in plant biotechnology. Plant Cell Reports. [Online] 35 (7), 1487–1491. Available from: doi:10.1007/s00299-016-1988-9 [Accessed 24 May 2019].

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. & Gao, C. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. [Online] 31 (8), 686–688. Available from: doi:10.1038/nbt.2650 [Accessed 13 May 2019].

Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal. [Online] 15 (2), 207–216. Available from: doi:10.1111/pbi.12603 [Accessed 24 May 2019].

Smyth, S. & McHughen, A. (2008) Regulating innovative crop technologies in Canada: The case of regulating genetically modified crops. Plant Biotechnology Journal. [Online] 6 (3), 213–225. Available from: doi:10.1111/j.1467-7652.2007.00309.x [Accessed 8 April 2019].

Sprink, T., Eriksson, D., Schiemann, J. & Hartung, F. (2016) Regulatory hurdles for genome editing: Process- vs. product-based approaches in different regulatory contexts. Plant Cell Reports. [Online] 35 (7), 1493–1506. Available from: doi:10.1007/s00299-016-1990-2 [Accessed 29 March 2019].

Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y. & Xia L. (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science. [Online] 8, 298. Available from: doi:10.3389/fpls.2017.00298 [Accessed 24 May 2019].

Urnov, F.D., Ronald, P.C. & Carroll, D. (2018) A call for science-based review of the European court’s decision on gene-edited crops. Nature Biotechnology. [Online] 36 (9), 800–802. Available from: doi:10.1038/nbt.4252 [Accessed 29 March 2019].

van de Wiel, C., Schaart, J., Niks, R. & Visser, R. (2010) Traditional plant breeding methods. [Online] Wageningen UR Plant Breeding. Report 338. Available from: [Accessed 28 August 2019].

van de Wiel, C.C.M., Schaart, J.G., Lotz, L.A.P. & Smulders, M.J.M. (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports. [Online] 11 (1), 1–8. Available from: doi:10.1007/s11816-017-0425-z [Accessed 13 May 2019].

Voytas, D.F. (2013) Plant genome engineering with sequence-specific nucleases. Annual Review of Plant Biology. [Online] 64 (1), 327–350. Available from: doi:10.1146/annurev-arplant-042811-105552 [Accessed 13 May 2019].

Voytas, D.F. & Gao, C. (2014) Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biology. [Online] 12 (6), e1001877. Available from: doi:10.1371/journal.pbio.1001877 [Accessed 13 May 2019].

Waltz, E. (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature. [Online] 532 (7599), 293–293. Available from: doi:10.1038/nature.2016.19754 [Accessed 24 May 2019].

Waltz, E. (2018) With a free pass, CRISPR-edited plants reach market in record time. Nature biotechnology. [Online] 36 (1), 6–7. Available from: doi:10.1038/nbt0118-6b [Accessed 24 May 2019].

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. & Zhao, K. (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE. [Online] 11 (4), e0154027. Available from: doi:10.1371/journal.pone.0154027 [Accessed 24 May 2019].

Wendt, T., Holm, P.B., Starker, C.G., Christian, M., Voytas, D.F., Brinch-Pedersen, H. & Holme, I.B. (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology. [Online] 83 (3), 279–285. Available from: doi:10.1007/s11103-013-0078-4 [Accessed 13 May 2019].

Whelan, A.I. & Lema, M.A. (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops & Food. [Online] 6 (4), 253–265. Available from: doi:10.1080/21645698.2015.1114698 [Accessed 30 August 2019].

Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu, J., Sahoo, G. & Kelliher, T. (2018) OsMATL mutation induces haploid seed formation in indica rice. Nature Plants. [Online] 4 (8), 530–533. Available from: doi:10.1038/s41477-018-0193-y [Accessed 13 May 2019].

Zhang, H., Zhang, J., Lang, Z., Botella, J.R. & Zhu, J.K. (2017) Genome editing—Principles and applications for functional genomics research and crop improvement. Critical Reviews in Plant Sciences. [Online] 36 (4), 291–309. Available from: doi:10.1080/07352689.2017.1402989 [Accessed 24 May 2019].

Zhong, Y., Liu, C., Qi, X., Jiao, Y., Wang, D., Wang, Y., Liu, Z., Chen, C., Chen, B., Tian, X., Li, J., Chen, M., Dong, X., Xu, X., Li, L., Li, W., Liu, W., Jin, W., Lai, J. & Chen, S. (2019) Mutation of ZmDMP enhances haploid induction in maize. Nature Plants. [Online] 5 (6), 575–580. Available from: doi:10.1038/s41477-019-0443-7 [Accessed 13 May 2019].



  • There are currently no refbacks.

Copyright (c) 2019 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



P-ISSN : 1907-1094
E-ISSN : 2549-1547

Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Faks.: (0251) 8338820

View My Stats