Genome-Edited Plants and the Challenges of Regulating Their Biosafety in Indonesia

nFN Bahagiawati, Dani Satyawan, Tri J. Santoso


Genome editing is a precise breeding technique to improve plant properties by editing specific genes that regulate desired trait. Genome editing techniques can be designed so that the resulting plant does not contain foreign genes and the resulting changes in DNA sequences cannot be distinguished from products obtained by conventional gene mutations which have been considered as safe and therefore unregulated. Thus, genome editing products in some countries are also not specifically regulated as GM products even though their assembly process uses recombinant DNA and genetic transformation. Brazil, like
Indonesia ratified the Cartagena Protocol, but it issued a special  regulation that provides dispensation for several types of genome editing products and exempts them from regulations that apply to transgenic plants. The steps taken by other countries in regulating genome editing products can be taken into consideration in drafting regulations in Indonesia, in order to create a conducive environment that supports the use of this potential technology while at the same time provides assurance regarding its safety to human health and the environment. The purpose of this review was to provide information on
the development of genome editing technologies in plant breeding, analyze its risks compared to that of conventional breeding, and compare its biosafety regulation in various countries to provide some considerations for drafting regulations on the risk assessment of genome editing products in Indonesia, as a ratifying country of the Cartagena Protocol.


Genome editing; CRISPR/Cas9; biosafety; variety releaseregulation.

Full Text:



Abdallah, N.A., Prakash, C.S. & McHughen, A.G. (2015)

Genome editing for crop improvement: Challenges and

opportunities. GM Crops & Food. [Online] 6 (4), 183–

Available from: doi:10.1080/21645698.

1129937 [Accessed 30 August 2019].

Allard, R.W. (1999) Principles of plant breeding. [e-book]

New York, John Wiley & Sons. Available from: https://




plant breeding%22 genetic segregation&f=false

[Accessed 28 August 2019].

Amirhusin, B. (2004) Perakitan tanaman transgenik tahan

hama. Jurnal Litbang , 23 (1), 1–7.

BB (2018) Laporan kinerja Balai Besar Penelitian

dan Pengembangan dan Sumber Daya

Genetik 2017. Badan Penelitian dan

Pengembangan , Kementerian .

Bogor, BB .

Beetham, P.R.,Kipp, P.B., Sawycky, X.L., Arntzen, C.J. &

May, G.D. (1999) A tool for functional plant genomics:

Chimeric RNA/DNA oligonucleotides cause in vivo

gene-specific mutations. Proceedings of the National

Academy of Sciences of the United States of America.

[Online] 96 (15), 8774–8778. Available from:

doi:10.1073/pnas.96.15.8774 [Accessed13 May 2019].

Belhaj, K.,Chaparro-Garcia, A., Kamoun, S. & Nekrasov, V.

(2013) Plant genome editing made easy: Targeted

mutagenesis in model and crop plants using the

CRISPR/Cas system. Plant Methods. [Online] 9 (1),

Available from: doi:10.1186/1746-4811-9-39

[Accessed 27 May 2019].

Bogdanove, A.J., Donovan, D.M., Elorriaga, E., Kuzma, J.,

Pauwels, K., Strauus, S.H. & Voytas, D.F.(2018)

Genome editing in agriculture: Methods, applications

and governance. CAST Issue Paper, 60.

Bortesi, L. & Fischer, R. (2015) The CRISPR/Cas9 system

for plant genome editing and beyond. Biotechnology

Advances. [Online] 33 (1), 41–52. Available from:

doi:10.1016/J.BIOTECHADV.2014.12.006 [Accessed

May 2019].

Budiani, A.,Putranto, R.A., Riyadi, I., Sumaryono, Minarsih,

H. & Faizah, R. (2018) Transformation of oil palm calli

using CRISPR/Cas9 system: Toward genome editing

of oil palm.IOP Conference Series: Earth and

Environmental Science. [Online] 183 (1). Available

from: doi:10.1088/1755-1315/183/1/012003[Accessed

May 2019].

Camacho, A.,Van Deynze, A., Chi-Ham, C. & Bennett, A.B.

(2014) Genetically engineered crops that fly under the

US regulatory radar. Nature Biotechnology. [Online] 32

(11), 1087–1091. Available from: doi:10.1038/nbt.3057

[Accessed 4 April 2019].

Chin, J.H.,Gamuyao, R., Dalid, C., Bustamam, M.,

Prasetiyono, J., Moeljopawiro, S., Wissuwa, M. &

Heuer, S.(2011) Developing rice with high yield under

phosphorus deficiency: Pup1sequence to application.

Plant Physiology. [Online] 156 (3), 1202–1216.

Available from: doi:10.1104/pp.111.175471 [Accessed

March 2019].

Cho, S.W.,Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S. &

Kim, J.S.(2014) Analysis of off-target effects of

CRISPR/Cas-derived RNA-guided endonucleases and

nickases. Genome research. [Online] 24 (1), 132–141.

Available from: doi:10.1101/gr.162339.113 [Accessed

March 2019].

Cohen, J. (2019) Fields of dreams. Science. [Online] 365

(6452), 422–425. Available from: doi:10.1126/science.

6452.422 [Accessed 4 September 2019].

Convention on Biological Diversity (2018) Parties to the

Cartagena protocol and its supplementary protocol on

liability and redress.[Online] Available from: https:// [Accessed 4 April 2019].

Cressey, D. (2013) Transgenics: A new breed. Nature.

[Online] 497 (7447),27–29. Available from: doi:

1038/497027a[Accessed 4 April 2019].

Curtin, S.J.,Anderson, J.E., Starker, C.G., Baltes, N.J.,

Mani, D., Voytas, D.F. & Stupar, R.M.(2013) Targeted

mutagenesis for functional analysis of gene duplication

in legumes.In: Rose, R. (ed.) Legume genomics.

Methods in Molecular Biology (Methods and

Protocols), vol. 1069. [e-book] Totowa, N.J.,Humana

Press, pp.25–42. Available from: doi:10.1007/978-1-

-613-9_3 [Accessed 13 May 2019].

Duensing, N.,Sprink, T., Parrott, W.A., Fedorova, M., Lema,

M.A., Wolt, J.D. & Bartsch, D. (2018) Novel features

and considerations for ERA and regulation of crops

produced by genome editing. Frontiers in

Bioengineering and Biotechnology. [Online] 6, 79.

Available from: doi:10.3389/fbioe.2018.00079

[Accessed 13 May 2019].

Eckerstorfer, M.F.,Engelhard, M., Heissenberger, A.,

Simon, S. & Teichmann, H.(2019) Plants developed by

new genetic modification techniques—Comparison of

existing regulatory frameworks in the EU and non-EU

countries. Frontiers in Bioengineering and

Biotechnology. [Online] 7, 26. Available from: doi:

3389/fbioe.2019.00026 [Accessed 13 May 2019].

Fu, Y.,Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D.,

Joung, J.K. & Sander, J.D. (2013) High-frequency offtarget

mutagenesis induced by CRISPR-Cas

nucleases in human cells. Nature Biotechnology.

[Online] 31 (9), 822–826. Available from: doi:

1038/nbt.2623 [Accessed 29 March 2019].

Hartung, F. & Schiemann, J. (2014) Precise plant breeding

using new genome editing techniques: Opportunities,

safety and regulation in the EU. The Plant Journal.

[Online] 78 (5), 742–752. Available from:

doi:10.1111/tpj.12413 [Accessed 28 March 2019].

Haslberger, A.G. (2003) Codex guidelines for GM foods

include the analysis of unintended effects. Nature

Biotechnology. [Online] 21 (7), 739–741. Available

from: doi:10.1038/nbt0703-739 [Accessed 29 August


Haun, W.,Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy,

A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A.,

Cedrone, F., Mathis, L., Voytas, D.F.& Zhang, F.(2014)

Improved soybean oil quality by targeted mutagenesis

of the fatty acid desaturase 2 gene family. Plant

Biotechnology Journal. [Online] 12 (7), 934–940.

Available from: doi:10.1111/pbi.12201 [Accessed 24

May 2019].

Hope, C. (2013) Major GM food company Monsanto ‘pulls

out of Europe’.The Telegraph. [Online] Available from:


Europe.html [Accessed 9 April 2019].

Hsu, P.D., Lander, E.S. & Zhang, F. (2014) Development

and applications of CRISPR-Cas9 for genome

engineering. Cell. [Online] 157 (6), 1262–1278.

Available from: doi:10.1016/J.CELL.2014.05.010

[Accessed 28 August 2019].

Ika (2019) Mengenal CRISPR/Cas9, teknik baru pemuliaan

tanaman. [Online] Tersedia pada:


tanaman [Diakses 1 Desember 2019].

James, C. (2017) Global status of commercialized biotech/

GM crops in 2017: Biotech crop adoption surges aseconomic benefits accumulate in 22 years. ISAAA

Brief53. Ithaca, N.Y., ISAAA.

Jia, H.,Zhang, Y., Orbović, V., Xu, J., White, F.F., Jones,

J.B. & Wang, N. (2017) Genome editing of the disease

susceptibility gene CsLOB1 in citrus confers resistance

to citrus canker. Plant Biotechnology Journal. [Online]

(7), 817–823. Available from: doi:10.1111/pbi.12677

[Accessed 24 May 2019].

Jiang, W.,Zhou, H., Bi, H., Fromm, M., Yang, B. & Weeks,

D.P.(2013) Demonstration of CRISPR/Cas9/sgRNAmediated

targeted gene modification in Arabidopsis,

tobacco, sorghum and rice. Nucleic Acids Research.

[Online] 41 (20), e188. Available from: doi:10.1093/

nar/gkt780 [Accessed 13 May 2019].

Jones, H.D. (2015) Future of breeding by genome editing is

in the hands of regulators. GM Crops & Food. [Online]

(4), 223–232. Available from: doi:10.1080/21645698.

1134405 [Accessed 30 August 2019].

Kleinstiver, B.P., Pattanayak, V., Prew M.S., Tsai, S.Q.,

Nguyen, N.T., Zheng, Z. & Joung, J.K. (2016) Highfidelity

CRISPR–Cas9 nucleases with no detectable

genome-wide off-target effects. Nature. [Online] 529

(7587), 490–495. Available from: doi:10.1038/

nature16526 [Accessed 29 March 2019].

Kok, E.J., Glandorf, D.C.M., Prins, T.W. &Visser, R.G.F.

(2019) Food and environmental safety assessment of

new plant varieties after the European Court decision:

Process-triggered or product-based? Trends in Food

Science & Technology. [Online] 88, 24–32. Available

from: doi:10.1016/J.TIFS.2019.03.007 [Accessed 28

August 2019].

Kuzma, J. & Kokotovich, A. (2011) Renegotiating GM crop

regulation. EMBO Reports. [Online] 12 (9), 883–888.

Available from: doi:10.1038/embor.2011.160

[Accessed 30 August 2019].

Lusser, M., Parisi, C., Rodriguez Cerezo, E. & Plan, D.

(2011) New plant breeding techniques: state-of-the-art

and prospects for commercial development. [Online]

Publications Office of the European Union. EUR

Scientific and Technical Research Reports. Available

from:doi:10.2791/54761[Accessed 30 August 2019].

Marchant, G.E. & Stevens, Y.A. (2015) A new window of

opportunity to reject process-based biotechnology

regulation. GM Crops & Food. [Online] 6 (4), 233–242.

Available from: doi:10.1080/21645698.2015.1134406

[Accessed 30 August 2019].

McDougall, P. (2011) The cost and time involved in the

discovery, development and authorisation of a new

plant biotechnology derived trait. [Online]Available



Study.pdf [Accessed 30 August 2019].

Muller, H.J. (1927) Artificial transmutation of the gene.

Science. [Online] 66, 84–87. Available from:

doi:10.2307/1651551 [Accessed 9 April 2019].

Nassar, N.M.A. & Ortiz, R. (2007) Cassava improvement:

Challenges and impacts. The Journal of Agricultural

Science. [Online] 145 (02), 163. Available from: doi:

1017/S0021859606006575 [Accessed 29 March


National Biosafety Technical Commission (2018) National

Biosafety TechnicalCommission normative resolution

no. 16, of January 15, 2018.[Online] Available from:


[Accessed 4 April 2019].

National Research Council (2004) Safety of genetically

engineered foods: Approaches to assessing

unintended health effects. Washington, D.C., National

Academies Press.

Ortigosa, A.,Gimenez-Ibanez, S., Leonhardt, N. & Solano,

R. (2019) Design of a bacterial speck resistant tomato

by CRISPR/Cas9-mediated editing of SlJAZ2. Plant

Biotechnology Journal. [Online] 17 (3), 665–673.

Available from: doi:10.1111/pbi.13006 [Accessed 4

April 2019].

Pathirana, R. (2011) Plant mutation breeding in agriculture.

Plant Sciences Reviews. Oxfordshire, UK, CAB


Pioneer (2016) DuPont announces intentions to

commercialize first CRISPR-Cas product: Press

release. [Online] Available from: https://


A56-E0B6-3EA6F85AAE92 [Accessed 8 November


Podevin, N.,Davies, H.V., Hartung, F., Nogué, F. &

Casacuberta, J.M. (2013) Site-directed nucleases: A

paradigm shift in predictable, knowledge-based plant

breeding. Trends in Biotechnology. [Online] 31 (6),

–383. Available from: doi:10.1016/j.tibtech.

03.004 [Accessed 4 April 2019].

Puchta, H. & Fauser, F. (2013) Gene targeting in plants: 25

years later. The International Journal of Developmental

Biology. [Online] 57 (6-7–8), 629–637. Available from:

doi:10.1387/ijdb.130194hp [Accessed 13 May 2019].

Purnhagen, K.P., Kok, E., Kleter, G., Schebesta, H., Visser,

R.G.F. & Wesseler, J.(2018) EU court casts new plant

breeding techniques into regulatory limbo. Nature

Biotechnology. [Online] 36 (9), 799–800. Available

from: doi:10.1038/nbt.4251 [Accessed 29 March 2019].

Qi, Y., Li, X., Zhang, Y., Starker, C.G., Baltes, N.J., Zhang,

F., Sander, J.D., Reyon, D., Joung, J.K. &Voytas, D.F.

(2013) Targeted deletion and inversion of tandemly

arrayed genes in Arabidopsis thaliana using zinc finger

nucleases. G3: Genes, Genomes, Genetics.[Online] 3

(10), 1707–1715. Available from: doi:10.1534/

g3.113.006270 [Accessed 13 May 2019].

Rodríguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E. &

Lippman, Z.B. (2017) Engineering quantitative trait

variation for crop improvement by genome editing.Cell.

[Online] 171 (2), 470-480.e8. Available from:

doi:10.1016/J.CELL.2017.08.030 [Accessed 24 May


Santoso, T.J. (2015) CRISPR, teknologi pengeditan genom

terarah untuk pengembangan tanaman nontransgenik.

Warta , 11 (2), 9–12.

Santoso, T.J. et al. (2016) Introduksi konstruk CRISPRCas9/

Gen GA20 Ox-2 ke padi dan identifikasi mutanmutan

padi melalui analisis molekuler dan sekuensing.

Laporan Akhir Penelitian TA 2016. Bogor,BB .

Scheben, A. & Edwards, D. (2018) Bottlenecks for genomeedited

crops on the road from lab to farm. Genome

Biology. [Online] 19 (1). Available from: doi:10.1186/

s13059-018-1555-5[Accessed 24 May 2019].

Schinkel, H. & Schillberg, S. (2016) Genome editing:

Intellectual property and product development in plant

biotechnology. Plant Cell Reports. [Online] 35 (7),

–1491. Available from: doi:10.1007/s00299-016-

-9 [Accessed 24 May 2019].

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z.,

Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. & Gao, C. (2013)

Targeted genome modification of crop plants using a

CRISPR-Cas system. Nature Biotechnology. [Online]

(8), 686–688. Available from: doi:10.1038/nbt.2650

[Accessed13 May 2019].

Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L.,

Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. (2017)

ARGOS8 variants generated by CRISPR-Cas9

improve maize grain yield under field drought stress

conditions. Plant Biotechnology Journal. [Online] 15

(2), 207–216. Available from: doi:10.1111/pbi.12603

[Accessed 24 May 2019].

Smyth, S. & McHughen, A. (2008) Regulating innovative

crop technologies in Canada: The case of regulating

genetically modified crops. Plant Biotechnology

Journal. [Online] 6 (3), 213–225. Available from:

doi:10.1111/j.1467-7652.2007.00309.x [Accessed 8

April 2019].

Sprink, T., Eriksson, D., Schiemann, J. & Hartung, F. (2016)

Regulatory hurdles for genome editing: Process- vs.

product-based approaches in different regulatory

contexts. Plant Cell Reports. [Online] 35 (7), 1493–

Available from: doi:10.1007/s00299-016-1990-2

[Accessed 29 March 2019].

Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Du, W.,

Du, J., Francis, F., Zhao, Y. & Xia L. (2017) Generation

of high-amylose rice through CRISPR/Cas9-mediated

targeted mutagenesis of starch branching enzymes.

Frontiers in Plant Science. [Online] 8, 298. Available

from: doi:10.3389/fpls.2017.00298 [Accessed 24 May


Urnov, F.D., Ronald, P.C. & Carroll, D. (2018) A call for

science-based review of the European court’s decision

on gene-edited crops. Nature Biotechnology. [Online]

(9), 800–802. Available from: doi:10.1038/nbt.4252

[Accessed 29 March 2019].

Voytas, D.F. (2013) Plant genome engineering with

sequence-specific nucleases. Annual Review of Plant

Biology. [Online] 64 (1), 327–350. Available from:


[Accessed13 May 2019].

Voytas, D.F. & Gao, C. (2014) Precision genome

engineering and agriculture: Opportunities and

regulatory challenges.PLoS Biology. [Online] 12 (6),

e1001877. Available from: doi:10.1371/journal.

pbio.1001877 [Accessed 13 May 2019].

Waltz, E. (2016) Gene-edited CRISPR mushroom escapes

US regulation. Nature. [Online] 532 (7599), 293–293.

Available from: doi:10.1038/nature.2016.19754

[Accessed24 May 2019].

Waltz, E. (2018) With a free pass, CRISPR-edited plants

reach market in record time. Nature biotechnology.

[Online] 36 (1), 6–7. Available from:

doi:10.1038/nbt0118-6b[Accessed 24 May 2019].

Wang, F.,Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu,

Y.G. & Zhao, K. (2016) Enhanced rice blast resistance

by CRISPR/Cas9-targeted mutagenesis of the ERF

transcription factor gene OsERF922. PLoS ONE.

[Online] 11 (4), e0154027. Available from:

doi:10.1371/journal.pone.0154027 [Accessed 24 May


Wendt, T.,Holm, P.B., Starker, C.G., Christian, M., Voytas,

D.F., Brinch-Pedersen, H.& Holme, I.B. (2013) TAL

effector nucleases induce mutations at a pre-selected

location in the genome of primary barley

transformants. Plant Molecular Biology. [Online] 83 (3),

–285. Available from: doi:10.1007/s11103-013-

-4 [Accessed 13 May 2019].

Whelan, A.I. & Lema, M.A. (2015) Regulatory framework for

gene editing and other new breeding techniques

(NBTs) in Argentina. GM Crops & Food. [Online] 6 (4),

–265. Available from: doi:10.1080/21645698.

1114698 [Accessed 30 August 2019].

Van de Wiel, C., Schaart, J., Niks, R. & Visser, R. (2010)

Traditional plant breeding methods. [Online]

Wageningen UR Plant Breeding. Report 338. Available


[Accessed 28 August 2019].

van de Wiel, C.C.M., Schaart, J.G., Lotz, L.A.P. &

Smulders, M.J.M.(2017) New traits in crops produced

by genome editing techniques based on deletions.

Plant Biotechnology Reports. [Online] 11 (1), 1–8.

Available from: doi:10.1007/s11816-017-0425-z

[Accessed 13 May 2019].

Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu,

J., Sahoo, G.& Kelliher, T. (2018) OsMATL mutation

induces haploid seed formation in indica rice. Nature

Plants. [Online] 4 (8), 530–533. Available from:

doi:10.1038/s41477-018-0193-y[Accessed 13 May


Zhang, H., Zhang, J., Lang, Z., Botella, J.R. & Zhu, J.K.

(2017) Genome editing—Principles and applications

for functional genomics research and crop

improvement. Critical Reviews in Plant Sciences.

[Online] 36 (4), 291–309. Available from: doi:

1080/07352689.2017.1402989 [Accessed 24 May


Zhong, Y., Liu, C., Qi, X., Jiao, Y., Wang, D., Wang, Y., Liu,

Z., Chen, C., Chen, B., Tian, X., Li, J., Chen, M., Dong,

X., Xu, X., Li, L., Li, W., Liu, W., Jin, W., Lai, J. &

Chen, S. (2019) Mutation of ZmDMP enhances haploid

induction in maize. Nature Plants. [Online] 5 (6), 575–

Available from: doi:10.1038/s41477-019-0443-

[Accessed 13 May 2019].



  • There are currently no refbacks.

Copyright (c) 2019 Jurnal AgroBiogen

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


P-ISSN : 1907-1094
E-ISSN : 2549-1547

Jurnal AgroBiogen

Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian

Jl. Tentara Pelajar 3A, Bogor 16111
Jawa Barat, Indonesia
Telp.: (0251) 8339793, 8337975
Faks.: (0251) 8338820

View My Stats