Eny Ida Riyanti, Edy Listanto


Biomass from lignocellulosic wastes is a potential source for biobased products.  However, one of the constraints in utilization of biomass hydrolysate is the presence of inhibitors. Therefore, the use of inhibitor-tolerant microorganisms in the fermentation is required. The study aimed to investigate the effect of a mixture of inhibitors on the growth of Saccharomyces cerevisiae strain I136 grown in medium containing synthetic inhibitors (acetic acid, formic acid, furfural, 5-hydroxymethyl furfural/5-HMF, and levulinic acid) in four different concentrations with a mixture of carbon sources, glucose  (50 g.l-1) and xylose (50 g.l-1) at 30oC. The parameters related to growth and fermentation products were observed. Results showed that the strain was able to grow in media containing natural inhibitors (BSL medium) with µmax of 0.020/h. Higher level of synthetic inhibitors prolonged the lag phase, decreased the cell biomass and ethanol production, and specific growth rate. The strain could detoxify furfural and 5-HMF and produced the highest ethanol (Y(p/s) of 0.32 g.g-1) when grown in BSL. Glucose was utilized as its level decreased in a result of increase in cell biomass, in contrast to xylose which was not consumed. The highest cell biomass was produced in YNB with Y (x/s) value of 0.25 g.g-1. The strain produced acetic acid as a dominant side product and could convert furfural into a less toxic compound, hydroxyl furfural. This robust tolerant strain provides basic information on resistance mechanism and would be useful for bio-based cell factory using lignocellulosic materials. 


inhibitors; growth profile; yeast; Saccharomyces cerevisiae

Full Text:



Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J. A, Struhl, K., Wiley, C.J., Allison, R.D., Bittner, M. &

Blackshaw, S. (2003) Current Protocols in Molecular Biology. Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith,K.S. (ed.) Molecular Biology. [Online] 1, John Wiley & Sons. Available from: doi:10.1002/mrd.1080010210.

Barnett, J.A. (2003) Beginnings of microbiology and biochemistry: The contribution of yeast research. Microbiology. [Online] 149 (3), 557–567. Available from: doi:10.1099/mic.0.26089-0.

Caspeta, L., Castillo, T. & Nielsen, J. (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Frontiers in Bioengineering and Biotechnology. [Online] 3, 1–15. Available from: doi:10.3389/fbioe.2015.00184.

Claassen, P.A.M., van Lier, J.B., Lopez Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M., de Vries, S.S. & Weusthuis, R.A. (1999) Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology. [Online] 52 (6), 741–755. Available from: doi:10.1007/s002530051586.

Dong, Y., Hu, J., Fan, L. & Chen, Q. (2017) RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Scientific Reports. [Online] 7, Nature Publishing Group. Available from: doi:10.1038/srep42659.

Field, S.J., Ryden, P., Wilson, D., James, S.A., Roberts, I.N., Richardson, D.J., Waldron, K.W. & Clarke, T.A. (2015) Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnology for Biofuels. [Online] 8 (1), 33. Available from: doi:10.1186/s13068-015-0217-z.

Heer, D. & Sauer, U. (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology. [Online] 1 (6), 497–506. Available from: doi:10.1111/j.1751-7915.2008.00050.x.

Hu, F. & Ragauskas (2012) Pretreatment and lignocellulosic chemistry. BioEnergy Research. [Online] 5 (4), 1043–1066. Available from: doi:10.1007/s12155.

Jayakody, L.N., Hayashi, N. & Kitagaki, H. (2013) Molecular mechanisms for detoxification of major aldehyde inhibitors for production of bioethanol by Saccharomyces cerevisiae from hot- compressed water-treated lignocellulose.In: Méndez-Vilas,A. (ed.) Materials and processes for energy: communicating current research and technological developments. Badajoz, Spain, Formatex Research Center, pp.302–311.

Jeon, Y.J., Fong, J.C.N., Riyanti, E.I., Neilan, B.A., Rogers, P.L. & Svenson, C.J. (2008) Heterologous expression of the alcohol dehydrogenase (adhI) gene from Geobacillus thermoglucosidasius strain M10EXG. Journal of Biotechnology. [Online] 135 (2), 127–133. Available from: doi:10.1016/j.jbiotec.2008.02.018.

Jönsson, L.J., Alriksson, B. & Nilvebrant, N.-O. (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels. [Online] 6 (16). Available from: doi:10.1186/1754-6834-6-16.

Lecoeur, H. (2002) Nuclear apoptosis detection by flow cytometry: Influence of endogenous endonucleases. Experimental Cell Research. [Online] 277 (1), 1–14. Available from: doi:10.1006/excr.2002.5537.

Li, H., Wu, M., Xu, L., Hou, J., Guo, T., Bao, X. & Shen, Y. (2015) Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microbial Biotechnology. [Online] 8 (2), 266–274. Available from: doi:10.1111/1751-7915.12245.

Liu, Z.L., Slininger, P.J., Dien, B.S., Berhow, M.A., Kurtzman, C.P. & Gorsich, S.W. (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Journal of Industrial Microbiology and Biotechnology. [Online] 31 (8), 345–352. Available from: doi:10.1007/s10295-004-0148-3.

Modig, T., Liden, G. & Taherzadeh, M.J. (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochemical Journal. [Online] 363 (3), 769–776. Available from: doi:10.1042/bj3630769.

Naik, S.N., Goud, V. V., Rout, P.K. & Dalai, A.K. (2010) Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews. [Online] 14 (2), 578–597. Available from: doi:10.1016/j.rser.2009.10.003.

Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M.F., Galbe, M., Hahn-Hägerdal, B. & Zacchi, G. (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology. [Online] 126 (4), 488–498. Available from: doi:10.1016/j.jbiotec.2006.05.001.

Palmqvist, E. & Hahn-Hägerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology. [Online] 74 (1), 25–33. Available from: doi:10.1016/S0960-8524(99)00161-3.

Panagiotopoulos, I.A., Bakker, R.R., de Vrije, T. & Koukios, E.G. (2011) Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresource Technology. [Online] 102 (24), Elsevier Ltd, 11204–11211. Available from: doi:10.1016/j.biortech.2011.09.090.

Riyanti, E.I. (2011) Beberapa gen pada bakteri yang bertanggung jawab terhadap produksi bioetanol. Jurnal Penelitian dan Pengembangan Pertanian. 30 (3), 41–47.

Riyanti, E.I. (2009) Biomassa sebagai bahan baku bioetanol. Jurnal Penelitian dan Pengembangan Pertanian. 28 (3), 101–110.

Riyanti, E.I. & Rogers, P.L. (2009a) Construction and expression of pet operon using shuttle vector for mesophilic and thermophilic bacteria. Jurnal Agrobiogen. 5 (1), 7–15.

Riyanti, E.I. & Rogers, P.L. (2009b) Kinetic evaluation of ethanol-tolerant thermophile Geobacillus thermoglucosidasius M10EXG for ethanol production. Indonesian Journal of Agricultural Science. 10 (1), 34–41.

Saini, J.K., Saini, R. & Tewari, L. (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. [Online] 5 (5), 337–353. Available from: doi:10.1007/s13205-014-0246-5.

Sims, R.E.H., Mabee, W., Saddler, J.N. & Taylor, M. (2010) An overview of second generation biofuel technologies. Bioresource Technology. [Online] 101 (6), Elsevier Ltd, 1570–1580. Available from: doi:10.1016/j.biortech.2009.11.046.

Singla, A. & Inubushi, K. (2014) Effect of biochar on CH4 and N2O emission from soils vegetated with paddy. Paddy and Water Environment. [Online] 12 (1), Springer Japan, 239–243. Available from: doi:10.1007/s10333-013-0357-3 [Accessed: 17 July 2017].

Sinumvayo, J.P., Ishimwe, N., Komera, I. & Niyomukiza, S. (2015) Ethanol biofuel production from lignocellulosic biomass by engineered saccharomyces cerevisiae. Journal of Academia and Industrial Research. 3 (10).

Smith, J., van Rensburg, E. & Görgens, J.F. (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC biotechnology. [Online] 14 (1), 41. Available from: doi:10.1186/1472-6750-14-41.

Taherzadeh, M.J., Gustafsson, L., Niklasson, C. & Lidén, G. (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. [Online] 53 (6), 701–708. Available from: doi:10.1007/s002530000328.

Yu, Y., Lou, X. & Wu, H. (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy and Fuels. [Online] 22 (1), 46–60. Available from: doi:10.1021/ef700292p.

Zabed, H., Faruq, G., Sahu, J.N., Azirun, M.S., Hashim, R. & Nasrulhaq Boyce, A. (2014) Bioethanol production from fermentable sugar juice. The Scientific World Journal. [Online] 2014. Available from: doi:10.1155/2014/957102.

Zha, Y., Westerhuis, J.A., Muilwijk, B., Overkamp, K.M., Nijmeijer, B.M., Coulier, L., Smilde, A.K. & Punt, P.J. (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnology. [Online] 14 (22), BMC Biotechnology. Available from: doi:10.1186/1472-6750-14-22



  • There are currently no refbacks.

Copyright (c) 2017 Indonesian Journal of Agricultural Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Agricultural Science (IJAS) by is licenced under a 

Publisher: Indonesian Agency for Agricultural Research and Development

Editorial Office:

Indonesian Institute for Agricultural Technology Transfer

Jalan Salak No. 22 Bogor-Indonesia




View Visitors Stats