Edy Listanto, Eny Ida Riyanti, Sustiprijatno Sustiprijatno


Maize (Zea mays L.) productivity in Indonesia is challenged to be increased using genetic engineering. Recent advances in Agrobacterium tumefaciens-mediated in-planta transforma-tion makes it possible to transform maize with low cost, and simple method. This study aimed to confirm pIG121Hm-Cs plasmid in A. tumefaciens, and to estimate the efficiency level of  A. tumefaciens-mediated in-planta transformation of Indonesian maize by using pIG121Hm-Cs plasmid containing nptII and hpt genes. A series of studies were conducted including confirmation of gene construct of pIG121Hm-Cs plasmid in A. tumefaciens, transformation of four maize lines through A. tumefaciens-mediated in-planta technique, acclimatization of transformant plants and molecular analysis of selected plants using polymerase chain reaction (PCR). The pIG121Hm-Cs plasmid was confirmed via PCR analysis using specific primers of nptII and hpt genes and resulted 700 bp and 500 bp for fragments of nptII and hpt, respectively. After selection, acclimatization and molecular analysis steps, the efficiency levels of transformation of four maize lines were low, ranging from 3.8% to 12.8%. The level of transformation efficiency of ST-27 line was the highest accounting for 12.8% of 45 planted embryos on selection medium based on PCR analysis using specific primer for nptII gene. Overall, A. tumefaciens-mediated in planta transformation on maize floral pistil in this study proved to be successful and rapid. Therefore, this enhanced transformation method will be beneficial for Indonesian maize genetic engineering.


Maize; Agrobacterium tumefaciens; in-planta transformation

Full Text:



Anuradha, T.S., S.K. Jami, R.S. Datla and P.B. Kirti. 2006. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene-based vector. J. Biosci. 31(2): 235–246.

Bent, A. 2000. Arabidopsis in-planta transformation. Uses, mechanisms and prospects for transformation of other species. Plant Physiol. 124: 1540–1547.

Carneiro, N.P. and A.A. Carneiro. 2013. Maize transformation to obtain plants tolerant to viruses by RNAi technology. [25 September 2013].

Chumakov, M.I., N.A. Rozhok, V.A. Velikov, V.S. Tyrnov and I.V. Volokhina. 2006. Agrobacterium-mediated in-planta transformation of maize via pistil filaments. Russ. J. Genet. 42: 893–897.

Chumakov, M.I. 2007. Agrobacterium-mediated plant transforma-tion under in-planta conditions. Transgenic Plant J. 1(1): 60–65.

Dellaporta, S.L., J. Wood and J.B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1(4): 19–21.

Fullner, K.J. and E.W. Nester. 1996. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J. Bacteriol. 178(6): 1498–1504.

Fullner, K.J. 1998. Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J. Bacteriol. 180(2): 430–434.

Gelvin, S.B. 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Micro. Mol. Biol. Rev. 67(1): 16–37. DOI: 10.1128/MMBR.67.1.16–37.2003.

Gunawan, L.W. 1992. Teknik Kultur Jaringan. Departemen Pendidikan dan Kebudayaan, Pusat Antar Universitas. Institut Pertanian Bogor, Bogor.

Hiei, Y.Y., S. Ohta, T. Komari and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J. 6(2): 271–282.

Herman, M. 1997. Insect resistant via genetic engineering. In A Darussamin, I.P. Kompiang, and S. Moeljopawiro (Eds.). Current Status of Agricultural Biotechtology in Indonesia, Research and Development and Priorities. Proceedings of the Second Conference on Agricultural Biotechnology. Jakarta, 13-15 June 1995. Agency for Agricultural Research and Development, Jakarta.

Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari and T. Kumashiro. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol 14: 745–750.

Jan, S.H., Z.K. Shinwari, S.H. Shah, A. Shahzad, M.A. Zia and N. Ahmad. 2016. In-planta transformation: recent advances. Romanian Biotechnol. Lett. 21(1): 11085–11091.

Ji, Q., X. Xu, and K. Wang. 2013. Genetic transformation of major cereal crops. Int. J. Dev. Biol. 57: 495–508.

Kojima, M., Y. Arai, N. Iwase, K. Shiratori, H. Shioiri, and M. Nozue. 2000. Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum esculentum) using Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. 64: 845–847.

Kojima, M., H. Shioiri, M. Nogawa, M. Nozue, D. Matsumoto, A. Wada, Y. Saiki and K. Kiguchi. 2004. In-planta transformation of kenaf plants (Hibiscus cannabinus var. aokawa no. 3) by Agrobacterium tumefaciens. J. Biosci. Bioeng. 98: 136–139.

Listanto, E., G.A. Wattimena, N.M. Armini, M.S. Sinaga, E. Sofiari and M. Herman. 2009. Regenerasi beberapa kultivar kentang dan transformasi kentang dengan gen RB melalui Agrobacterium tumefaciens. J. Hort. 19(2): 137–147.

Martins, P.K., T.J. Nakayama, A.P. Ribeiro, B.A. Dias Brito da Cunha, A.L. Nepomuceno, F.G. Harmon, A.K. Kobayashi and H.B.C. 2015. Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep. 6: 61–63.

Mayavan, S., K. Subramanyam, M. Arun, M.G.K. Dev, G. Sivanandhan, B. Jaganath, M. Manickavasagam, N. Selvaraj and A. Ganapathi. 2013. Agrobacterium tumefaciens-mediated in-planta seed transformation strategy in sugarcane. Plant Cell Rep. 32: 1557–1574. DOI 10.1007/s00299-013-1467-5.

Mayerhofer, R., Z. Koncz-Kalman, C. Nawrath, G. Bakkeren, A. Crameri, K. Angelis, G.P. Redei, J. Schell, B. Hohn and C. Koncz. 1991. T-DNA integration: a mode of illegitimate recombination in plants. The EMBO Journal 10(3): 697–704.

Moiseeva, Y.M., V.A. Velikov, I.V. Volokhina, Y.S. Gusev, O.S. Yakovleva and M.I. Chumakov. 2014. Agrobacterium-mediated transformation of maize with antisense suppression of the proline dehydrogenase gene by an in-planta method. British Biotechnol. J. 4(2): 116-125.

Mu, G., N. Chang, K. Xiang, Y. Sheng, Z. Zhang and G. Pan. 2012. Genetic transformation of maize female inflorescence following floral dip method mediated by Agrobacterium. Biotechnology 11(3): 178–183.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

Pathi, K.M., S. Tula, K.Md.K. Huda, V.K. Srivastava and N. Tuteja. 2013. An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signaling & Behavior 8(10): e25891–e25896.

Ping, L.X., M. Nogawa, M. Nozue, M. Makita, M. Takeda, L. Bao and M. Kojima. 2003. In-planta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. J. Insect Biotechnol. Sericol. 72: 177–184.

Rahmawati, S. 2006. Status perkembangan perbaikan sifat genetik padi menggunakan transformasi Agrobacterium. J. AgroBiogen 2: 36-44.

Rakshit, S., Z. Rashid, J.C. Sekhar, T. Fatma and S. Dass. 2009. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell. Tiss. Org. Cult. 33: 45–50.

Razzaq, A., I.A. Hafiz, I. Mahmood and A. Hussain. 2011. Development of in-planta transformation protocol for wheat. Afr. J. Biotechnol. 10: 740–750.

Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning, A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York.

Sato, H. and T. Takamizo. 2006. Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci. 52: 95–98.

Supartana, P., T. Shimizu, H. Shioiri, M. Nogawa, M. Nozue and M. Kojima. 2005. Development of simple and efficient in-planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J. Biosci. Bioeng. 100: 391–397.

Wada, N., C. Feng and A. Gulati. 2008. Introduction and over view. pp. 115–125. In A. Gulati and J. Dixon (Eds.). Maize in Asia Changing Markets and Incentives. Academic Foundation, New Delhi.



  • There are currently no refbacks.

Comments on this article

View all comments

Copyright (c) 2017 Indonesian Journal of Agricultural Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Agricultural Science (IJAS) by is licenced under a 

Publisher: Indonesian Agency for Agricultural Research and Development

Editorial Office:

Indonesian Institute for Agricultural Technology Transfer

Jalan Salak No. 22 Bogor-Indonesia




View Visitors Stats