DEVELOPMENT OF EST-SSR MARKERS TO ASSESS GENETIC DIVERSITY OF BROCCOLI AND ITS RELATED SPECIES

Pengembangan Marka EST-SSR untuk Analisis Keragaman Genetik Tanaman Brokoli dan Kerabatnya

Nur Kholilatul Izzah*, Reflinur® and Tae-Jin Yang*®

*Indonesian Industrial and Beverage Crops Research Institute
Jalan Raya Pakuwon km 2, Sukabumi 43357, West Java
Phone +62 266 6542181, Fax. +62 266 6542087, E-mail: balittri@litbang.pertanian.go.id
®Indonesian Center of Agricultural Biotechnology and Genetic Resources Research and Development
Jalan Tentara Pelajar No. 3A, Bogor 16111, West Java
®Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University
Seoul, 151-921, Korea
*Corresponding author: lila_ref@yahoo.co.id

Submitted 15 August 2015; Revised 10 March 2016; Accepted 15 March 2016

ABSTRACT

Development of Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) markers derived from public database is known to be more efficient, faster and low cost. The objective of this study was to generate a new set of EST-SSR markers for broccoli and its related species and their usefulness for assessing their genetic diversity. A total of 202 Brasica oleracea ESTs were retrieved from NCBI and then assembled into 172 unigenes by means of CAP3 program. Identification of SSRs was carried out using web-based tool, RepeatMasker software. Afterwards, EST-SSR markers were developed using Primer3 program. Among the identified SSRs, trinucleotide repeats were the most common repeat types, which accounted for about 50%. A total of eight primer pairs were successfully designed and yielded amplification products. Among them, five markers were polymorphic and displayed a total of 30 alleles with an average number of six alleles per locus. The polymorphic markers were subsequently used for analyzing genetic diversity of 36 B. oleracea cultivars including 22 broccoli, five cauliflower and nine kohlrabi cultivars based on genetic similarity matrix as implemented in NTSYS program. At similarity coefficient of 61%, a UPGMA clustering dendrogram effectively separated 36 genotypes into three main groups, where 30 out of 36 genotypes were clearly discriminated. The result obtained in the present study would help breeders in selecting parental lines for crossing. Moreover, the novel EST-SSR markers developed in the study could be a valuable tool for differentiating cultivars of broccoli and related species.

Keywords: Broccoli, cauliflower, kohlrabi, EST-SSR markers, genetic diversity

INTRODUCTION

Broccoli (Brassica oleracea L. var. italica Plenck) is one of the most important vegetables in the world. Broccoli has noteworthy nutrients including vitamin C, vitamin A (mostly as beta-carotene), folic acid, calcium and fiber. The popularity of broccoli has
been steadily increasing in many countries that led to
the rising number of new cultivars. Characterization of
many different cultivars produced by different world-
wide companies would provide valuable information
for the introduction and genetic improvement of
broccoli cultivars (Lu et al. 2009).

One of the main interests in broccoli breeding
program is to develop new varieties resistant to black
rot disease caused by *Xanthomonas campestris* pv.
campestris (Pammel) Dowson (*Xcc*). Black rot disease
is widely known as the most destructive disease in
broccoli and its related species, which has a broad
range geographical distribution (Meenu et al. 2013).
Development of resistant varieties can be achieved by
characterization of broccoli germplasm collection
through morphological and molecular approaches.

Many scientists exert a lot of efforts to obtain new
source of black rot resistance through application of
molecular markers. Sharma et al. (2016) utilized 364
intron length polymorphic and microsatellite markers
to find new gene source for black rot resistance.
Meanwhile, Lee et al. (2015) successfully identified
four QTLs related to black rot resistance. Hence,
development of molecular markers related to black rot
disease is important to enhance breeding program in
broccoli and its related species.

Molecular markers have been proven to be a
powerful tool for many genetic analyses. One of the
advantage of molecular markers is more reliable than
morphological characteristics since they are not
During the last two decades, the invention of poly-
merase chain reaction (PCR) has generated a variety
of PCR-based markers including random amplified
polyphorphic DNA (RAPD), amplified fragment length
polymorphisms (AFLP), sequence-related amplified
polymorphisms (SRAP), simple sequence repeats
(STRs) and single nucleotide polymorphism (SNP).
Among those markers, SSRs become marker of choice
because it requires only a small amount of DNA,
easily detectable by PCR, co-dominantly inherited,
multi-allelic, abundant and amenable to high-
throughput analysis (Kalia et al. 2011).

SSRs, also known as microsatellites, are tandem
repeats of 2–6 bp DNA core sequences that are widely
distributed in both non-coding and transcribed
sequences, generally known as genomic-SSRs and
EST-SSRs, respectively (Shirasawa et al. 2011).
Genomic SSRs are highly polymorphic and widely
distributed throughout the genome (Wang et al. 2011).
However, development of genomic SSR markers is
costly, laborious and time-consuming because it
requires a small-insert genomic library and performs
hybridization with SSR oligonucleotides and sequence
candidate clones (Yi et al. 2006). Fortunately, the
availability of EST sequences in public databases
overcomes the difficulty in developing genomic SSR
markers through conventional method. ESTs are
particularly attractive for marker development since
they represent coding regions of the genome, and are
also being developed at an extremely fast pace for
many genomes (Kumpatla and Mukhopadhyay 2005).
Therefore, exploitation of EST-SSRs has become more
feasible, low cost and faster by means of bio-
informatics tools such as Sputnik, SSRFinder,
MicroSatellite (MISA), Tandem Repeat Finder (TRF)
(Varshney et al. 2005) and SSRIT (Tennynk et al. 2001).
With these tools, SSRs are easily obtained by
electronic search of EST databases (Hu et al. 2010).

Up to now, EST-SSRs have been successfully
identified and developed in various plant species, and
used for multiple applications including genetic
diversity analysis, cultivar identification, construc-
tion of high-density genetic linkage maps, marker-
assisted selection, identification of quantitative trait
loci (QTLs), association mapping and molecular
breeding (Kumari et al. 2013). EST-SSRs, which
located in coding region of the genome, demonstrated
some valuable advantages such as they can be rapidly
found by electronic sorting and have greater
transferability between species than genomic SSR,
since genic regions are more conserved among
related species (Shirasawa et al. 2011; Chen et al.
2015). Furthermore, EST-SSRs usually present in
gene-rich regions and can be used as anchor markers
for comparative mapping and genetic evolutionary
studies (Zhou et al. 2014).

The great advantages of EST-SSR markers have
attracted the attention of many scientists, which
then use these markers for genetic diversity study. For
instance, Wen et al. (2010) had been successfully
used 36 EST-SSR markers for classifying 45 *Jatropha
curcas* accessions into six groups, which showed
correlation with geographic origin. A recent study
reported a set of EST-SSR and gSSR markers which
clearly separated 91 commercial *B. oleracea* cultivars
belonging to six subspecies including cabbage,
broccoli, cauliflower, kohlrabi, kale and kailan into six
different clusters with a tendency to cluster into its
subspecies (Izzah et al. 2013). Moreover, another
research done by Zhao et al. (2014) also exhibited the
power of SSR markers in dividing 49 cauliflower
genotypes into three major groups based on their
curd types. In present study, we report on the
development of novel EST-SSR markers using *B. oleracea* SSH-cDNA library of black rot infection derived from public database, and their utility for assessing genetic diversity of broccoli and its related species. In addition, these newly developed markers will also be useful for further breeding program in broccoli and its related species, especially to develop black rot resistant varieties.

MATERIALS AND METHODS

Plant Materials and DNA Extraction

A total of 36 genotypes consisting of 22 broccoli cultivars (*B. oleracea* var. *italica* Plenck), five cauliflowers (*B. oleracea* var. *botrytis*), and nine kohlrabies (*B. oleracea* var. *gongylodes*) (Table 1)

<table>
<thead>
<tr>
<th>Cultivar Code</th>
<th>Cultivar name</th>
<th>Varietal group</th>
<th>Source</th>
<th>Characteristics of main phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2008</td>
<td>Yuan you qing hua cai</td>
<td>Broccoli</td>
<td>Tokita (Japan)</td>
<td>Early maturity, domed head shape, medium bead size</td>
</tr>
<tr>
<td>B2013</td>
<td>Yu huang</td>
<td>Broccoli</td>
<td>Hongkong Seed (Japan)</td>
<td>Medium maturity, domed head shape, medium bead size</td>
</tr>
<tr>
<td>B2014</td>
<td>Youshou</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Early maturity, domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2056</td>
<td>Heart Land</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Medium maturity, domed head shape, anthocyanin-free, medium bead size</td>
</tr>
<tr>
<td>B2060</td>
<td>Subaru</td>
<td>Broccoli</td>
<td>Brolead (Japan)</td>
<td>Early maturity, domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2061</td>
<td>Fighter</td>
<td>Broccoli</td>
<td>Brolead (Japan)</td>
<td>Early maturity, domed head shape, anthocyanin-free, fine bead size</td>
</tr>
<tr>
<td>B2065</td>
<td>KB-052</td>
<td>Broccoli</td>
<td>Mikado-Kyowa (Japan)</td>
<td>Early maturity, fine head size</td>
</tr>
<tr>
<td>B2070</td>
<td>Green Magic</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Early maturity, domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2071</td>
<td>Tradition</td>
<td>Broccoli</td>
<td>Seminis (U.S.A.)</td>
<td>Early maturity, domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2073</td>
<td>Montop</td>
<td>Broccoli</td>
<td>Syngenta (Switzerland)</td>
<td>Early maturity, domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2085</td>
<td>Green Belt</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Medium maturity, domed head shape, medium bead size</td>
</tr>
<tr>
<td>B2097</td>
<td>Grace</td>
<td>Broccoli</td>
<td>Bejo (Netherlands)</td>
<td>Medium maturity, domed head shape, medium bead size</td>
</tr>
<tr>
<td>B2098</td>
<td>Super Grace</td>
<td>Broccoli</td>
<td>Bejo (Netherlands)</td>
<td>Medium maturity, domed head shape, medium bead size</td>
</tr>
<tr>
<td>B2134</td>
<td>Castle</td>
<td>Broccoli</td>
<td>Takii (Japan)</td>
<td>Early maturity, fine head size</td>
</tr>
<tr>
<td>B2135</td>
<td>Anfree-747</td>
<td>Broccoli</td>
<td>Takii (Japan)</td>
<td>Early maturity, fine head size, anthocyanin-free</td>
</tr>
<tr>
<td>B2138</td>
<td>Marathon</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Late maturity, high domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2139</td>
<td>BI-15 (Monaco)</td>
<td>Broccoli</td>
<td>Syngenta (Switzerland)</td>
<td>Late maturity, high domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2140</td>
<td>Heritage</td>
<td>Broccoli</td>
<td>Seminis (U.S.A.)</td>
<td>Late maturity, high domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2145</td>
<td>Ironman</td>
<td>Broccoli</td>
<td>Seminis (Netherlands)</td>
<td>Late maturity, high domed head shape, fine bead size</td>
</tr>
<tr>
<td>B2193</td>
<td>Aosima</td>
<td>Broccoli</td>
<td>Sakata (Japan)</td>
<td>Late maturity, high domed head shape, anthocyanin-free, fine bead size</td>
</tr>
<tr>
<td>B2198</td>
<td>Green Dome</td>
<td>Broccoli</td>
<td>Takii (Japan)</td>
<td>Late maturity, domed head shape, anthocyanin-free, fine bead size</td>
</tr>
<tr>
<td>B2205</td>
<td>Endevour</td>
<td>Broccoli</td>
<td>Takii (Japan)</td>
<td>Late maturity, domed head shape, anthocyanin-free, fine bead size</td>
</tr>
<tr>
<td>B2266</td>
<td>Snow Dream</td>
<td>Cauliflower</td>
<td>Takii (Japan)</td>
<td>Medium maturity, white curd color, high domed head shape, good coverage</td>
</tr>
<tr>
<td>B2267</td>
<td>White Dream</td>
<td>Cauliflower</td>
<td>Takii (Japan)</td>
<td>Medium maturity, white curd color, high domed head shape, good coverage</td>
</tr>
<tr>
<td>B2268</td>
<td>Snow March</td>
<td>Cauliflower</td>
<td>Takii (Japan)</td>
<td>Medium maturity, white curd color, high domed head shape, good coverage</td>
</tr>
<tr>
<td>B2270</td>
<td>Violet Dream</td>
<td>Cauliflower</td>
<td>Takii (Japan)</td>
<td>Early maturity, violet curd color, early bolting type</td>
</tr>
<tr>
<td>B2271</td>
<td>Orange Dream</td>
<td>Cauliflower</td>
<td>Takii (Japan)</td>
<td>Medium maturity, orange curd color, high domed head shape</td>
</tr>
<tr>
<td>K3001</td>
<td>Korist</td>
<td>Kohlrabi</td>
<td>Bejo (Netherlands)</td>
<td>Early maturity, round head shape, milky skin color</td>
</tr>
<tr>
<td>K3008</td>
<td>Express Forcer</td>
<td>Kohlrabi</td>
<td>Takii (Japan)</td>
<td>Early maturity, flat head shape, pale green color</td>
</tr>
<tr>
<td>K3038</td>
<td>White Rookie</td>
<td>Kohlrabi</td>
<td>Numhems Korea (Korea)</td>
<td>Early maturity, flat head shape, green color</td>
</tr>
<tr>
<td>K3039</td>
<td>Winner</td>
<td>Kohlrabi</td>
<td>Takii (Japan)</td>
<td>Medium maturity, flat head shape, pale green color</td>
</tr>
<tr>
<td>K3044</td>
<td>UFO</td>
<td>Kohlrabi</td>
<td>Seminis (Korea)</td>
<td>Early maturity, flat head shape, green color</td>
</tr>
<tr>
<td>K3048</td>
<td>Worldcool</td>
<td>Kohlrabi</td>
<td>Jowun Seed (Korea)</td>
<td>Early maturity, flat head shape, green color, very long field holding ability</td>
</tr>
<tr>
<td>K3065</td>
<td>Kolibri</td>
<td>Kohlrabi</td>
<td>Bejo (Netherlands)</td>
<td>Early maturity, flat head shape, red color</td>
</tr>
<tr>
<td>K3066</td>
<td>Purple King</td>
<td>Kohlrabi</td>
<td>Jowun Seed (Korea)</td>
<td>Early maturity, flat head shape, red color, less fiber</td>
</tr>
<tr>
<td>K3083</td>
<td>Dongchuan</td>
<td>Kohlrabi</td>
<td>Konmyeon Noksang</td>
<td>Late maturity, flat head shape, green color, high fiber, early bolting type</td>
</tr>
</tbody>
</table>
were used for polymorphic screening of newly designed EST-SSR markers, and subsequently used for genetic diversity analysis. All of plant materials examined in the present study were kindly provided by Joen Seed Company, Korea. Genomic DNA was extracted from fresh young leaf tissue according to the modified cetyltrimethylammonium bromide (CTAB) method (Allen et al. 2006). Measurement of the quality and quantity of the extracted DNA were done using a NanoDrop ND-1000 (NanoDrop Technologies, Inc., Wilmington, DE, USA). The final concentration of each DNA sample was adjusted to 10 ng µl⁻¹ for PCR analysis.

EST-SSR Markers Development

A total of 202 EST sequences of *B. oleracea* SSH-cDNA library of black rot infection in leaves of resistant variety compared with its susceptible near-isogenic line were downloaded from NCBI database (http://www.ncbi.nlm.nih.gov/). These ESTs were then assembled using CAP3 program with the following criteria: 93% identity and 40 bp overlap (Huang and Madan, 1999). A web-based tool, RepeatMasker software (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) was used for searching SSRs in the unigenes with the criteria as follows: a minimum of seven repeats for dinucleotide motifs, six repeats for trinucleotide motifs, and five repeats for tetra-, penta- and hexanucleotide motifs. These SSRs were then selected based on the length of flanking sequence. SSRs with long flanking sequence were subsequently used for designing primer; in contrast, SSRs which have short flanking sequence were removed due to insufficient for primer design. Primer3 program (http://bioinfo.ut.ee/primer3) was used for designing primers from the flanking sequence of each SSR motif. The input criteria for primer design were as follows: a length of 18–24 bp, a GC content of 40–80%, an estimated amplicon size of 150–350 bp and melting temperatures of 55–63°C. EST-SSR markers developed in the present study were designated as “BoEMS”, representing *Brassica oleracea* EST microsatellites. All of the primers were synthesized by Macrogen (Seoul, Korea).

Amplification of EST-SSR Markers

PCR amplifications were performed in a total volume of 10 µl containing 10 ng DNA template, 1 x PCR reaction buffer (Inclone Biotech), 0.2 mM each dNTP (Inclone Biotech), 0.2 µM each primer and 1 unit Tag DNA polymerase (Inclone Biotech). The reaction mixture was initially denatured at 94°C for 4 minutes, followed by 35 cycles of amplifications at 94°C for 30 seconds, 54°C for 30 seconds and 72°C for 30 seconds, and a final extension at 72°C for 10 minutes. The PCR products were separated on 6% non-denaturing polyacrylamide gel electrophoresis using 1 x TBE buffer. The gels were stained with ethidium bromide for 20 minutes and DNA bands were visualized under UV light using the gel documentation system.

Data Analysis

The reproducible amplified fragments were scored “1” to indicate the presence and “0” to indicate the absence of a band. The genetic relationship among 36 cultivars was evaluated based on genetic similarity coefficient as implemented in NTSYS-PC version 2.1 (Rohlf 2000). Clustering analysis was carried out using the unweighted pair group arithmetic mean method (UPGMA) in the SAHN subprogram of NTSYS-PC. The similarity matrix was also used for principal coordinate analysis (PCOAs).

PowerMarker version 3.25 (Liu and Muse 2005) was also used for calculating number of alleles (*N*ₐ), specific alleles (*S*ₐ), major allele frequency (*M*ₐ), gene diversity (GD), expected heterozygosity (*H*ₑ) and polymorphic information content (PIC) values. Major allele frequency (*M*ₐ) was defined as allele with the highest frequency.

RESULTS

Characteristics of SSRs from ESTs in *B. oleracea*

In order to facilitate the development of novel EST-SSR markers for broccoli, we analyzed 202 EST sequences from *B. oleracea* SSH-cDNA library of black rot infection in leaves of resistant variety compared with its susceptible near-isogenic line, representing a total length of 68,925 kb. These EST sequences were assembled into 172 unigenes consisting of 20 contigs and 152 singletons (Fig. 1). Of those unigenes, we identified 12 EST sequences from SSRs (SSR-ESTs). Analysis of the nucleotide sequences of EST containing SSRs exhibited that trinucleotide was the most abundant type, represented by 50% among identified SSRs.
whereas other SSR types including dinucleotide, hexanucleotide and heptanucleotide repeats accounted for 16.67% each (Table 2). Regarding to repeat motifs, CTT motifs which member of trinucleotide repeat exhibited higher frequency (33.33%) compared to the other repeat motifs.

Table 2. Characterization of SSRs identified in 202* Brassica oleracea *SSH-cDNA library EST.

<table>
<thead>
<tr>
<th>Repeat motif</th>
<th>Repeat number</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinucleotide</td>
<td>- - - - - -</td>
<td>2</td>
<td>16.67</td>
</tr>
<tr>
<td>Trinucleotide</td>
<td>- - 1 1 - - -</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Hexanucleotide</td>
<td>2 - - - - - -</td>
<td>2</td>
<td>16.67</td>
</tr>
<tr>
<td>Heptanucleotide</td>
<td>2 - - - - - -</td>
<td>2</td>
<td>16.67</td>
</tr>
<tr>
<td>Total</td>
<td>4 - 1 2 1 2</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Development and Polymorphism Level of EST-SSR Markers

A total of 12 EST containing SSR (SSR-ESTs) were used for designing primer, which allowed the development of eight EST-SSR primer pairs. The remaining four SSR-ESTs could not be designed as primer due to short flanking sequence. These newly designed primers were then evaluated their applicability and polymorphism level by using 36 *B. oleracea* genotypes including 22 broccoli, five cauliflower and nine kohlrabi cultivars. All of the designed primers yielded unambiguous PCR products (Fig. 2). Furthermore, five of the eight EST-SSR markers revealed polymorphism among the 36 *B. oleracea* genotypes tested (Table 3).

Five polymorphic EST-SSR markers obtained in this study would be useful for identifying resistant cultivar since they related with black rot resistance. In addition, to know another function of these polymorphic markers, we also performed blast analysis against *Arabidopsis* protein sequences database using the BLASTX algorithm (http://www.ncbi.nlm.nih.gov/Blast). The best hits of the ESTs were assigned at expected value <10^-6 (Table 4). The blast results showed that all of the polymorphic primers demonstrated significant hits to *Arabidopsis* protein sequences. This indicates that the polymorphic primers designed in the present study should be valuable for several genetic applications. Furthermore, these markers would also be helpful for further breeding program, particularly to develop resistant varieties against black rot disease in broccoli and its related species.

Fig. 2. Profile of two polymorphic EST-SSR markers separated using 6% non-denaturing polyacrylamide gel electrophoresis. 1–22: broccoli cultivars; 23–27: cauliflower cultivars; 28–36: kohlrabi cultivars.
Assessment of Genetic Diversity in *B. oleracea* Cultivars

Five polymorphic EST-SSR markers were first analyzed using PowerMarker program to know their allelic diversity. The polymorphic markers produced a total of 30 alleles with an average of six alleles per locus (Table 5). The number of alleles for each locus ranged from three (BoEMS01 and BoEMS07) to ten (BoEMS05). Other components of allelic diversity such as frequency of major alleles, gene diversity, heterozygosity and PIC value on each locus were also investigated. The frequency of major alleles ranged from 0.27 (BoEMS05) to 0.92 (BoEMS07) with means of 0.59. An average of gene diversity across five loci was 0.53 with a range from 0.15 (BoEMS07) to 0.82 (BoEMS05). Meanwhile, an average of heterozygosity and PIC value was 0.55 and 0.51, respectively. Marker BoEMS02 exhibited the highest heterozygosity value (0.80), whereas the highest PIC value was shown by marker BoEMS05 (0.79). In contrast, marker BoEMS07 showed the lowest heterozygosity and PIC value of 0.17 and 0.15, respectively.

The genotyping data of the five polymorphic markers were then used for assessing the genetic diversity of broccoli cultivars and its related species. Based on genetic similarity values, a UPGMA clustering dendrogram was successfully developed. At a similarity coefficient of 61% as a threshold level, the dendrogram was divided into three major groups (Fig. 3). Group I contained 27 cultivars, which then further divided into two subgroups at similarity coefficient of 73%. Subgroup I comprised 20 cultivars with the majority of the members are broccoli cultivars, except for one cauliflower cultivar (Violet Dream) and one kohlrabi cultivar (Worldcol). In this subgroup, two broccoli cultivars, Subaru and Grace, were found to be identical. On the other hand, subgroup II consisted of seven cultivars including two broccoli, three cauliflower and two kohlrabi cultivars. In which, two out of three cauliflower cultivars were undifferentiated. Group II represented four kohlrabi cultivars; meanwhile group III contained five cultivars including two broccoli, one cauliflower and two kohlrabi cultivars. Two broccoli cultivars which were member of group III, Tradition and Marathon, were also indistinguishable.

In addition, we also performed PCoA analysis based on genetic similarity value, which assigned 22 broccoli, 5 cauliflower and 9 kohlrabi cultivars into two groups (Fig. 4). The result exhibited that group I in PCoA resembles group I and II in UPGMA dendrogram, likewise group II in PCoA corresponds to group III in UPGMA dendrogram. Therefore, this PCoA analysis supports the grouping results developed by that of the UPGMA method.
Fig. 3. Cluster dendrogram of thirty six Brassica oleracea cultivars developed based on genetic similarity coefficient using five newly designed EST-SSR markers. Broccoli cultivars were written in normal font, cauliflower cultivars in italic font, and kohlrabi cultivars in bold font.

Fig. 4. PCoA analysis revealed relationships among thirty six broccoli cultivars and its related species established using five EST-SSR loci.
DISCUSSION

The availability of a large number of EST sequences has proven to be valuable as they provide important genetic information and plenty of gene-specific transcript sequences. As described by Ma et al. (2012), EST sequences facilitate designing DNA markers such as SSR markers through *in silico* mining. In present study, we report the characterization of 202 EST sequences of *B. oleracea* SSH-cDNA library of black rot infection in leaves obtained from public database with a total length of 68,925 kb as well as its usefulness in the development of EST-SSR markers. The development of an adequate number of species specific markers is crucial in order to allow many genetic analyses in broccoli and its related species. In our observation, we found that 5.94% of *B. oleracea* ESTs contained SSRs, which is in accordance with previous study conducted by Izzah et al. (2014). The observed frequency of SSRs in plant EST usually depends on several factors including the mining criteria and tools, EST datasets size and genome structure or composition (Varshney et al. 2005).

Furthermore, trinucleotide repeats were the most dominant repeat types obtained, which accounted for 50% among the identified SSRs. The abundance of trinucleotide repeats in SSRs derived from EST sequences were also found in other plant species such as citrus (45.1%), flax (76.8%), barley (56%) and jatropha (57.75%) (Thiel et al. 2003; Chen et al. 2006; Cloutier et al. 2009; Wen et al. 2010). The large number of trinucleotide repeats found in coding regions reflects the fact that this repeat type would not cause frame shift mutation that could silence the gene (Cloutier et al. 2009).

Since EST-SSR markers exhibited numerous advantages such as more feasible, low cost, fast and cost-effective approach in marker development over that of genomic SSRs, many scientists have begun to develop them in various plant species. Even though EST-SSR markers usually have lower polymorphism level compared to that of genomic SSRs, they showed higher level of transferability to related species due to the high level of conservation in the flanking SSRs sequences (Chen et al. 2015). Besides, EST-SSRs also showed more closely linked to underlying genes than genomic SSRs, which mean that the EST-SSRs mined herein may provide more information on genetic variation in *B. oleracea* genomes (Ma et al. 2012). In this study, we obtained that all of the designed primer were successfully amplified in all the cultivar DNA samples. The amplification results were higher than those of the earlier reports in several plant species that ranged from 60% to 90% (Varshney et al. 2005), which perhaps resulted from high quality of EST sequences used. Moreover, about 62.5% of new EST-SSR markers exhibited polymorphisms in a set of 22 broccoli cultivars and its related species. The polymorphism level gained in the present study was higher compared to those obtained from other plant species such as flax (40.7%), soybean (12.8%), and barley (35% and 42%) that were examined with EST-SSR markers (Thiel et al. 2003; Varshney et al. 2006; Hisano et al. 2007; Cloutier et al. 2009). The differences observed in the polymorphism levels might be influenced by the relatedness or the number of genotypes tested (Cloutier et al. 2009).

Polymorphism information content (PIC) that defined as a closely related diversity measure was also investigated. The average of PIC value found in the present study was 0.51, lower than that observed by Louarn et al. (2007) which was 0.64. The PIC value differences between the two studies may be because in this study we used EST-SSR markers that have more conserved sequences of gene-derived sequences, whereas the ones reported by Louarn et al. (2007) used genomic SSRs. Another possible explanation was the relatedness of the genotypes and the number of genotypes used were different in the two studies. However, identified polymorphisms in the present study directly sampled the variations in transcribed regions of the genome and reflected the diversity inside or adjacent to the genes, which make EST-SSR markers more attractive and informative than that of genomic SSRs (Hu et al. 2010). On the other hand, since these markers were developed from EST sequences of *B. oleracea* SSH-cDNA library of black rot infection in leaves, it would be great advantages for breeders working in broccoli and related species to support their breeding programs. This is because five polymorphic markers obtained in this study can be utilized by breeders for discriminating resistant and susceptible cultivars in broccoli. With the availability of these EST-SSR markers specific to black rot resistance, the selection process can be improved. This benefit can be exploited by breeders to accelerate breeding procedure for developing black rot resistant genetic stocks/lines in broccoli and its related species. Previous study also suggested the benefits of molecular markers to distinguish between resistant and susceptible varieties. For instance, Sharma et al. (2016) found three markers (At1g70610, Na14-G02, and At1g71865)
that can differentiate resistant and susceptible bulks against black rot disease in *Brassica carinata*.

The polymorphic EST-SSR markers developed in this study had successfully distinguished 30 out of 36 cultivars in cluster analysis. Meanwhile, six cultivars including four broccoli and two cauliflower cultivars were remain undifferentiated. The failure to differentiate those broccoli and cauliflower cultivars could be caused by their genetic close relatedness, although they come from different seed companies (Louarn et al. 2007). Therefore, addition of more polymorphic EST-SSR markers can be one of the solutions to improve the separation of the cultivars. Nevertheless, the novel EST-SSR markers designed in the present study could separate broccoli cultivars into two different groups, group I and group III. In which, 20 out of 22 broccoli cultivars were clustered together in group I. This result indicates that the broccoli cultivars which originated from different seed companies demonstrated close relatedness, which may be because those seed companies shared their breeding materials or they used common elite lines with different names (Izzah et al. 2013; Zhao et al. 2014). In general, the clustering of 22 broccoli cultivars did not reflect their main phenotypic characters. All of broccoli cultivars that placed in group I and group III showed different stages of maturity and various types of bead size and head shape. This finding is similar to the previous study reported by Izzah et al. (2013), which described that the grouping of all tested broccoli cultivars did not coincide with their phenotypic characters. However, we found two broccoli cultivars (Tradition and Marathon) clustered separately in group III. This indicates that these two cultivars are unique compared to the other cultivars, although they have similar phenotypic characters.

The grouping of cauliflower cultivars exhibited that most of them were clustered in group I, but located in different subgroups. Three cauliflower cultivars that clustered in subgroup 2 show the same period of maturity (medium) and have high domed shape. Meanwhile, cultivar Violet Dream that clustered in subgroup I has distinct phenotypic characters as follows: violet curd colour, early maturity and early bolting type. Interestingly, cultivar Snow Dream, which has same phenotypic characters with those of the three cultivars in subgroup 2, was placed in group III. In the case of kohlrabi cultivars, four cultivars clustered together in group II, and most of them exhibited early maturity and flat head shape. Meanwhile, the other five cultivars were scattered in group I and group III. Among nine kohlrabi cultivars, one cultivar (Worldcol) clustered separately in group I/subgroup 1. This outcome may correspond to character of very long field holding ability that only possessed by cultivar Worldcol. Overall, based on cluster analysis, we found five unique cultivars including two broccoli cultivars (Tradition and Marathon), two cauliflower cultivars (Violet Dream and Snow Dream), and one kohlrabi cultivar (Worldcol). All of these cultivars can be selected as a good candidate for parental lines in the future breeding program in order to maximize heterosis expression in their progenies.

CONCLUSION

The result presented in this study demonstrated the usefulness of EST sequences derived from public database for designing primer. A total of five polymorphic EST-SSR markers were generated. Cluster analysis using these polymorphic markers successfully divided 22 broccoli cultivars and its related species into three major groups. Group I dominated by broccoli cultivars, whereas group II only contained kohlrabi cultivars. The third group consisted of broccoli, cauliflower and kohlrabi cultivars. The grouping by UPGMA dendrogram also exhibited five unique cultivars comprising of two broccoli cultivars, two cauliflower cultivars and one kohlrabi cultivar that can be used as valuable breeding materials. Furthermore, five polymorphic EST-SSR markers obtained here would be useful for differentiating resistant and susceptible cultivars against black rot disease, because these markers were developed from *B. oleracea* SSH-cDNA library of black rot infection in leaves. The outcome of this study should be useful in supporting breeding program of broccoli and its related species.

ACKNOWLEDGEMENTS

This work was supported by the Technology Development Program (No. 309008-05) for Agriculture and Forestry, Ministry of Food, Agriculture, Forestry and Fisheries, Republic of Korea. We would like to thank Dr. Kyounggu Ahn from the Joeun Seed Company, who has provided all the plant materials used in present study.
REFERENCES

