KAJIAN HINDOLA FULVA SEBAGAI VEKTOR PENYAKIT BAKTERI PEMBULUH KAYU CENGKEH (BPKC)

ARIFUL ASMAN
Balai Penelitian Tanaman Rempah dan Obat

RINGKASAN

ABSTRACT
Studies on Hindola fulva as a vector of BPKC disease of clove
Experiments were carried out at the Experimental Garden and laboratory of Sub Station Research Institute for Spices and Medicinal Crops Solok, West Sumatera and the Centre Laboratory of Chemistry and Physical Analysis Center Gadjah Mada University, Yogyakarta from April 1986 to February 1987. The objectives of the experiments were to examine the behaviour of H. fulva, the percentage of infective H. fulva and transmission of P. syzygii to clove seedlings. The results showed that not all H. fulva contained P. syzygii. The longer of the insects fed on diseased plants the higher of infective insects and bacterial concentration in the insects were obtained. H. fulva was able to transmit P. syzygii to healthy clove seedlings but the percentage infection was low. P. syzygii was still detectable from the insects after transmission, but the bacterial concentration decreased.

PENDAHULUAN

Belum diketahui hubungan yang lebih rinci antara P. syzygii dengan H. fulva. Serangga penelitian laboratorium dan lapangan telah dilakukan yang bertujuan untuk mengetahui perilaku H. fulva, persentase H. fulva infektif baik yang berasal dari lapangan maupun dari serangga yang telah diberi makan pada tanaman sakit dan persentase H. fulva yang dapat menularkan P. syzygii ke bibit cengkeh sehat.

BAHAN DAN METODE

Pengamatan Perilaku H. fulva di Lapang
Observasi terhadap perilaku H. fulva dilakukan pada tanaman cengkeh di kebun yang sudah terserang BPKC dan kebun yang masih sehat. Keberadaan H. fulva diamati pada cabang/ranting yang masih muda dari tajuk bagian tengah sampai atas tanaman cengkeh.
Isolasi P. syzygii

Isolasi P. syzygii dilakukan dari H. fulva yang dikoleksi dari kebun yang terserang penyakit BPKC. Selain itu isolasi dilakukan dari H. fulva yang berasal dari kebun yang bebas penyakit BPKC dan sebelumnya serangga diberi makan pada bibit cengkeh sakit (diinokulasi mekanik dengan P. syzygii) (acquisition-access feeding) dalam kantung plastik berhubung masing-masing selama 24, 48 dan 72 jam.

Sebagian serangga-serangga yang telah mendapat perlakuan tersebut dikurung pada bibit cengkeh sehat (transmission-access feeding) masing-masing dalam jangka waktu yang sama dengan lamanya pengurungan pada bibit cengkeh sakit. Isolasi P. syzygii juga dilakukan dari H. fulva yang telah diberi makan pada tanaman sakit selama 72 jam dan kemudian serangga-serangga dipindahkan ke bibit cengkeh sehat tiga kali berturut-turut selama 24 jam (serial transmission).

Isolasi bakteri dari H. fulva dilakukan dengan cara memasukkan serangga-serangga dalam kantung plastik, kemudian disimpan beberapa menit dalam lemari es untuk membuat serangga pingsan. Selanjutnya setiap ekor H. fulva diambil dengan pinset, dicuci dengan alkohol 70% sekuaknya. Kemudian serangga tersebut dicuci lagi dengan aquades steril, dan dikerilingkan dengan kertas filter. Setelah itu serangga tersebut digiling halus di dalam lumpang steril dan kemudian ditambahkan 0,3 ml medium Periwinkle Wilt cair (DAVIS et al., 1981), sehingga terbentuk suspensi. Suspensi diteteskan ke dalam cawan petri yang sudah tersedia medium PW pada. Suspensi diratakan dengan spatula pada permukaan medium, untuk memperoleh sebaran koloni (Komunikasi pribadi dengan Dr. S.J. EDEN-GREEN).

Isolat bakteri yang tumbuh dari serangga dibandingkan dengan isolat asal tanaman yang terserang BPKC. Untuk itu dilakukan isolasi P. syzygii dari tanaman cengkeh terserang BPKC di lapangan dan bibit cengkeh sakit (diinokulasi secara mekanik dengan P. syzygii). Akar dan ranting tanaman tersebut dipijit dengan gunting setek. Us bakteri yang keluar digoreskan merata pada permukaan media PW. Semua media tersebut diinkubasikan di dalam inkubator selama 6 hari pada suhu 28-30°C. Pengamatan dilakukan terhadap jumlah dan warna koloni. Uji serologi dengan slide agglutination test (SUPRIADI et al., 1990) dan pengamatan terhadap sel bakteri di bawah mikroskop elektron dilakukan untuk memastikan kesamaan isolat bakteri yang tumbuh dari serangga dan tanaman.

Penularan P. syzygii pada bibit cengkeh

Sebagai kelanjutan dari percobaan isolasi di atas, bibit cengkeh sehat yang dipergunakan diamati untuk mengetahui penularan P. syzygii pada tanaman tersebut. Bibit yang digunakan adalah jenis Sikotok, umur 1 tahun dan sudah diselai dari kontaminasi BPKC (bebas BPKC). Bibit-bibit tersebut diletakkan berkelompok dibawah naungan serta dipelihara dan diamati timbulnya gejala penyakit. Tanaman yang sakit dan hampir mati dipotong dan diperiksa adanya infeksi P. syzygii.

HASIL DAN PEMBAHASAN

Perilaku Hindola fulva

Populasi imago tertinggi ditemukan pada awal musim hujan, terutama pada waktu munculnya daun-daun muda. Serangga ini lebih banyak ditemukan pada tanaman cengkeh yang mempunyai mahkota yang rampak, bentuk tajuk oval dan kerucut. Pada tanaman cengkeh yang akan ber-
bunga, pertumbuhan daun muda sedikit sekali, populasii *H. fulva* biasanya rendah. Penangkapan imago lebih mudah dilaksanakan pagi hari antara jam 7-10 pagi, karena gerakananya lambat. Aparhila cabaya sudah cerah, gerakan imago cepat dan sensitif terhadap gangguan, sehingga sulit ditangkap.

Isolasi *P. syzygiii* dari Tanaman dan *H. fulva*

Hasil isolasi menunjukkan adanya kesamaan bentuk dan warna dari koloni isolat bakteri yang diperoleh dari *H. fulva* dan tanaman sakit baik yang berasal dari lapangan maupun bibit cengkeh yang diinokulasi secara mekanik. Bentuk koloni hula cembung, mengkilat seperti tetesan embun. Pertumbuhan koloni tersebut satu persatu di permukaan medium diameter 1-3 mm pada umur satu minggu, warna bening kekuning-kuningan.

Uji serologi bakteri-bakteri tersebut semuanya menunjukkan hasil yang positif. Demikian pula dengan pengamatan dibawah mikroskop elektron menunjukkan bahwa bentuk sel bakteri yang berasal dari *H. fulva* sama dengan bentuk sel bakteri yang berasal dari tanaman sakit dan bibit cengkeh yang diinokulasi mekanik, yaitu dinding selnya berkerut, tidak mempunyai flagella, panjang sel 1,0-1,5µm dan lebar 0,5-0,6µm. Bentuk koloni demikan sesuai dengan identifikasi bakteri *P. syzygiii* yang telah dikemukakan sebelumnya oleh BENNETT et al., (1987). Dengan demikian dapat dikatakan bahwa isolat bakteri yang berasal dari tanaman sakit dan *H. fulva* adalah *P. syzygiii*.

Jumlah koloni *P. syzygiii* yang diperoleh dari isolasi yang berasal dari tanaman sakit dan bibit yang diinokulasi mekanik dengan *P. syzygiii* lebih banyak dan berbeda nyata dibandingkan dengan jumlah koloni dari isolat yang berasal dari *H. fulva*. Makin lama serangga diberi makan pada tanaman sakit makin banyak bakteri yang dikandungnya. Akan tetapi pengurungan serangga serangga yang telah diberi makan pada tanaman sakit dan kemudian pada bibit cengkeh sehat menurunkan jumlah bakteri yang dikandungnya. Hal ini mungkin disebabkan sebagian kecil bakteri telah ditularkan ke bibit cengkeh sehat.

Penularan *P. syzygiii* pada Bibit Cengkeh*

Hasil pengujian penularan *P. syzygiii* oleh *H. fulva* pada bibit cengkeh menunjukkan bahwa persentase bibit yang terinfeksi *P. syzygiii* (yang terlihat dari adanya gejala penyakit BPKC) rendah (Tabel 2). Persentase tertinggi terlihat pada perlakuan dengan pemberian makan serangga pada tanaman sakit 72 jam (18 persen). Rendahnya bibit cengkeh yang terinfeksi *P. syzygiii* melalui *H. fulva* pada percobaan ini didu-
Tabel 1. Hasil Isolasi P. syzygium dari tanaman eengkeh saki dan H. fulva

Table 1. Result on isolation of P. syzygium from diseased clove plants and H. fulva

<table>
<thead>
<tr>
<th>Sources</th>
<th>Jumlah Contoh</th>
<th>Isolat yang tumbuh (%)</th>
<th>Rata-rata jumlah koloni bakteri/dawan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanaman sakit</td>
<td>10</td>
<td>100</td>
<td>8017 a</td>
</tr>
<tr>
<td>Diseased plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibit eengkeh diinokulasi</td>
<td>10</td>
<td>100</td>
<td>6600 a</td>
</tr>
<tr>
<td>Inoculated clove seedlings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dari kebun terserang BPKC</td>
<td>100</td>
<td>16</td>
<td>1836 c</td>
</tr>
<tr>
<td>HF from diseased clove gardens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF selama 24 jam</td>
<td>50</td>
<td>40</td>
<td>2440 c</td>
</tr>
<tr>
<td>HF with AAF for 24 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF selama 48 jam</td>
<td>50</td>
<td>46</td>
<td>3768 b</td>
</tr>
<tr>
<td>HF with AAF for 48 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF selama 72 jam</td>
<td>50</td>
<td>50</td>
<td>4427 b</td>
</tr>
<tr>
<td>HF with AAF for 72 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF dan TAF selama 24 jam</td>
<td>50</td>
<td>36</td>
<td>1612 d</td>
</tr>
<tr>
<td>HF with AAF and TAF for 24 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF dan TAF selama 48 jam</td>
<td>50</td>
<td>40</td>
<td>1727 d</td>
</tr>
<tr>
<td>HF with AAF and TAF for 48 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF dan TAF selama 72 jam</td>
<td>50</td>
<td>44</td>
<td>1600 d</td>
</tr>
<tr>
<td>HF with AAF and TAF for 72 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF dengan AAF selama 24 jam dan</td>
<td>50</td>
<td>42</td>
<td>1627 d</td>
</tr>
<tr>
<td>penularan berseri masing-masing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>selama 24 jam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF with AAF for 24 hours and serial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of each transmission for 24 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
HF = Hindola fulva, *AAF* = pemberian makan pada bibit saki (Acquisition - access feeding)

Notes:
TAF = penularan ke bibit sehat (Transmission - access feeding)
Angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf 5%
Numbers followed by the same letter in each column are not significantly different at 5% level
Tabel 2. Penularan P. syzygi i pada bibit cengkeh sehat oleh H. fulva
Table 2. Transmission of P. syzygi i on clove seedlings by H. fulva

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Jumlah bibit uji</th>
<th>Bibit terinfeksi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF dengan AAF selama 24 jam</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>HF dengan AAF selama 48 jam</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>HF dengan AAF selama 72 jam</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>HF dengan AAF selama 72 jam dan TAF1</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>HF dengan AAF selama 72 jam dan TAF2</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>HF dengan AAF selama 72 jam dan TAF3</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

Keterangan: AAF = pemberian makan pada tanaman sakit
Notes: Acquisition = access feeding
TAF1, 2 dan 3 = Penularan ke bibit sehat hari kesatu, kedua dan ketiga
Transmission = access feeding at first, second and third days

...ga karena konsentrasi P. syzygi i yang dikandung H. fulva rendah, hanya digunakan satu ekor serangga pada satu ranting dan kemungkinan ada P. syzygi i yang avirulen dan virulen yang dikandung H. fulva.

Gejala penyakit terlihat setelah 138-142 hari terhitung sejak H. fulva dikurung pada bibit sehat berupa daun-daun menguning pada satu ranting/cabang, layu, kering dan gugur mulai dari pucuk muda.

KESIMPULAN

Dalam usaha pengendalian penyakit BPKC, tindakan yang perlu dilakukan antara lain sanitasi dan eradicasi untuk menghilangkan sumber inokulum dan penyemproman secara massal dengan insektisida untuk mengendalikan serangga vektornya di kebun yang telah terserang agar H. fulva yang infektif tidak menyebar ke pertanaman cengkeh yang masih sehat. Selain itu untuk sementara waktu jangan menanam cengkeh di daerah yang sudah terjangkit penyakit BPKC.
DAFTAR PUSTAKA

