RINGKASAN


PENDAHULUAN

Phytophthora palmivora (Butl.) Butl., merupakan penyebab penyakit busuk pangkal batang (BPB) tanaman lada. Patogennya, dapat menyerang semua bagian tanaman namun yang paling berbahaya adalah serangan pada pangkal batang. Gejala di bagian atas tanaman terlihat setelah tanaman rusak parah sehingga upaya penyembuhannya sering tidak berhasil.


Penelitian ini merupakan suatu kegiatan awal dalam usaha memelajari penyebaran salah satu mikroorganisme antagonis, yaitu Trichoderma spp. dan Penicillium spp. pada berbagai lahan.
BAHAN DAN METODE

Contoh-contoh tanah dikumpulkan dari beberapa daerah tanaman lada, yaitu Kebun Percobaan (KP) Sukamulya (Jawa Barat), KP Petaling (Bangka), kebun milik petani (KR) di Cahaya Negeri (Lampung Utara) dan KR di Sukadana (Lampung Tengah) yang diambil dari sekitar tanaman sampai kedalaman 15 cm. Sejumlah 10 contoh tanah dikumpulkan dari masing-masing lokasi. Pengemasan dilakukan dengan menggunakan kantung-kantung polietilen. Tanah yang terkumpul kemudian dikering anginkan untuk selanjutnya tanah yang berasal dari satu lokasi dicampur dan diambil sub-contoh sebanyak 5 g.

Isolasi jamur dilakukan dengan mengikuti tata cara pengenceran berseri. Masing-masing sub-contoh tanah disuspensikan di dalam 50 ml air bebas hama kemudian diencerkan secara berseri sampai 10⁻³. Setengah ml suspensi dari kepekatan 10⁻³ dan 10⁻⁴ dituangkan di atas permukaan media AKD-kloramfenikol, 2 hari kemudian suspensi yang tersisa di permukaan media dicuci dengan air suling. Setelah diinkubasi selama 3 hari koloni yang tumbuh dibedakan atas dasar warna dan bentuk koloni dan dihitung jumlah masing-masing koloni. Tiap jenis koloni yang berbeda dari satu daerah dipindahkan ke dalam media miring AKD untuk perlakuan selanjutnya.


Pengujian sifat antagonis dilakukan secara in vitro dengan cara menanam P. palmivora berpasangan dengan jamur yang terisolasi pada media AKD. Jari-jari koloni P. palmivora diukur pada hari ke-7 dan pengamatan mikroskopis dilakukan pada hari ke-10 terhadap potongan biakan yang terletak diantara pertemuan kedua koloni.

Pengujian ekstrak toksin dilakukan dengan jalan menambahkan sejumlah ekstrak toksin ke dalam suspensi zoospora. Setelah 1 jam, ke dalam campuran tersebut ditambahkan 3 tetes larutan rose bengal (1:1000). Jumlah dan keadaan zoospora yang berkecambah dihitung dan diamati dibawah mikroskop.

HASIL DAN PEMBAHASAN

Hasil isolasi menunjukkan adanya perbedaan distribusi dan jenis jamur (Gambar 1). Populasi terbanyak terdapat di tanah asal Sukamulya sedang yang terendah di Lampung Tengah.

Menurut ROVIRA dalam MANOHARA (1988) keadaan lingkungan tanaman mempengaruhi jumlah dan jenis ekssudasi akar tanaman yang selanjutnya mempengaruhi komposisi mikro-

Table 1. The effect of antagonists to Phytophthora palmivora in in vitro test.

<table>
<thead>
<tr>
<th>Antagonis</th>
<th>Jari-jari koloni (Radial growth)</th>
<th>Miselia (Mycelium)</th>
<th>Sporangium</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-I</td>
<td>15-20</td>
<td>lisis (jusis)</td>
<td>tidak ada (none)</td>
</tr>
<tr>
<td>TH-II</td>
<td>20-25</td>
<td>lisis (jusis)</td>
<td>tidak ada (none)</td>
</tr>
<tr>
<td>TH-III</td>
<td>20-25</td>
<td>lisis (jusis)</td>
<td>tidak ada (none)</td>
</tr>
<tr>
<td>TV</td>
<td>15-20</td>
<td>lisis (jusis)</td>
<td>tidak ada (none)</td>
</tr>
<tr>
<td>Pe-I</td>
<td>15-20</td>
<td>salah bentuk (mal-formation)</td>
<td>abortus (abortus)</td>
</tr>
<tr>
<td>Pe-II</td>
<td>15-20</td>
<td>salah bentuk (mal-formation)</td>
<td>abortus (abortus)</td>
</tr>
</tbody>
</table>

Keterangan (Note) : TH = Trichoderma harzianum, TV = T. viridae, Pe = Penicillium sp. (I = Sukamulya, II = Cahayanegeteri, III = Sukadana).
Gambar 1. Populasi Trichoderma spp., Penicillium spp. dan jamur lain di lahan lada.
Figure 1. Population of Trichoderma spp., Penicillium spp. and other fungal isolates in pepper land.

Gambar 2. Pengaruh ekstrak kultur antagonis terhadap persentase perkecambahan zoospora.
Figure 2. The effect of extract of antagonist culture on percentage of zoospores germination.


Dua dari 4 jenis Trichoderma spp. yang terisolasi adalah T. harzianum dan T. viridae se-

Gambar 3. (a) sporangium abortus (400x), (b) pangkal tabung kecambah lisis (400x), (c) miselis malformasi/salah bentuk (200x), (d) pembentukan zona inhibisi oleh antagonis.
dangkan dua lainnya dan beberapa isolat 

Penicillium belum dapat diidentifikasi. Pengujian 

antagonisme secara in vitro menunjukkan bahwa 

satu jenis jamur berbeda daya dan cara hambat-

nya (Tabel 1). 

Penicillium spp. rata-rata me-

unjukkan zona inhibisi yang nyata, menyebab-

kan salah bentuk dan lisis dari miselija dan sporan-

gium abortus (Gambar 3a, b, dan c) sedangkan 

Trichoderma spp. tidak demikian karena jamur 

tersebut tumbuh terus kearah koloni 

P. palmi-

vora menyebabkan koloni 

P. palmivora tertutupi oleh miselija antagonis. Miselija 

P. palmivora 

yang tumbuh dibawah miselija 

Trichoderma ba-

nyak yang mengalami lisis.

Ekstrak kultur memiliki daya hambat per-

kecambahan zoospora yang berbeda. TH-I dan 

PE-I memiliki daya hambat yang paling tinggi, 

dekua jamur tersebut terisolasi dari tempat yang 

sama yaitu KP Sukamulya. Sedangkan isolat asal 

Cahayanegeri rendah daya hambatnya. Ekstrak 

ekultur Trichoderma spp. menyebabkan lisis pada 

sebagian tabung kecambah dan zoosporanya, se-

dangkan ekstrak Penicillium spp. hanya meng-

hambat pertumbuhan tabung kecambah saja 

tanpa menyebabkan lisis.

Menurut MALAJCZUK (1983) Trichoderma 

spp. bersifat antagonis karena dapat menghasil-

kan antibiotika dan ensim-ensim yang menye-

babkan lisis dan memparasis miselija. Sama hal-

nya dengan Trichoderma, Penicillium spp. ba-

nyak yang menghasilkan antibiotika dan kadang-

kadang sebagai parasit hifa. Produk-produk se-

kunder jamur tersebut sering dapat diinhibisikan ke 

media agar. Hal ini yang menyebabkan adanya 

pengaruh terhadap pertumbuhan Phytoph-

thora yang dikulturkan bersama dengan anta-

gonis. Melalui penelitian ini terungkap pula bah-

wa produk sekunder jamur-jamur tersebut da-

pat digunakan untuk menghambat pembentukan 

sporangium dan perkecambahan zoospora 

P. palmivora. Adanya perbedaan daya hambat me-

unjukkan adanya strain-strain dari jamur ter-

sebut yang memiliki daya antagonis yang tinggi.

Strain yang ditemukan di KP Sukamulya tamp-

paknya merupakan strain yang paling potensial 

untuk menekan populasi Phytophthora palmi-

vora.

KESIMPULAN

Antagonis Trichoderma harzianum, 

T. viri-

dae dan Penicillium spp. ditemukan disemua sen-

tra pertanaman lada. Populasi jamur-jamur ter-

sebut tidak sama di setiap daerah karena adanya 

perbedaan dalam tindakan budidaya lada 

dan vegetasi lainnya. Trichoderma spp. dan Pe-

nicillium spp. mempengaruhi pembentukan spor-

angium. Anagonis yang ditemukan dari KP 

Sukamulya memiliki daya hambat yang tinggi.

DAFTAR PUSTAKA

BARNETT, H.L. and F.L. BINDER, 1973 The fungal 

host parasite relationship. Annu. Rev. Phy-

topathology 11.

COOK, R.J. 1979 Antagonism and biocontrol: 

Concluding Remark. In Schippers, B. and W. 

Gamms (Eds.), 1979 Soilborne Plant Patho-

ogen. AP: 653-657.

KARDEN MULYA dan D. MANOHARA. 1987. A-6 

isolat antagonis Phytophthora palmivora: 

Pengaruh lama penyinaran, umur biakan 

dan ekstrak. Prosiding seminar ilmiah sehari, PFI 

Komda Bogor.: 

MALAJCZUK, M. 1983 Microbial antagonist to 

Phytophthora In: Erwin, D.C., S.B. Garcia 

and P.H. Tsa0 (Eds.), 1983 Phytophthora its 

biology, ecology, taxonomy and pathology. 

APS: 197-218.

MANOHARA, D. 1988 Ekobiologi Phytophthora 

palmivora (BUTLER) penyebab busuk pang-

kal batang tanaman lada (Piper nigrum L.). 

Fak. Pasca Sarjana IPB (Disertasi).