Effect of Dosage and Application Frequencies of Trichoderma Biofungicide on Rigidoporus microporus Infection in Rubber

Widi Amaria, Rita Harni, Edi Wardiana


Biological agents Trichoderma virens and T. amazonicum have been developed and examined for their effectiveness through in vitro and in vivo approaches against Rigidoporus microporus, the cause of white root disease (WRD) in rubber. The effectiveness of these bio-agents can be determined by testing the dosage and frequency of Trichoderma spp. biofungicide application. The research aimed to investigate the effective dose and application frequency of Trichoderma spp. biofungicide on R. microporus infection in rubber seedling. The experiment was conducted in laboratory and screen house of Indonesian Industrial and Beverage Crops Research Institute (IIBCRI), Sukabumi, from June to December 2014. A randomized block design was used with 14 treatments and 3 replications, i.e biofungicide combination (T. virens and T. amazonicum), dosage (25, 50, and 75 g), application frequencies (1 and 2 times application), and two controls (positive and negative). Rubber seedlings used were propellegitiem seeds of GT1 clone planted in polybags. Trichoderma spp. was multiplied using fermentation method in liquid medium, whereas biofungicide was formulated using talc as carrier. Observed variables including Trichoderma spp. population number, incubation period, attack intensity, and WRD attack suppression. The results showed that T. virens and T. amazonicum biofungicides with 50 g/plant dose at one application was the most effective and efficient in suppressing R. microporus development on rubber seedlings. The type, dosage, and frequencies of application increased Trichoderma spp. population in soil, prolonged the pathogen’s incubation period, decreased WRD attack intensity, and suppress the attack of WRD disease.


Application frequency; biofungicide; dosage; Trichoderma; white root disease

Full Text:

PDF (Indonesian)


Ali, M. I., Yasser, M. M., Mousa, A. S., & Khalek, M. A. (2012). Optimization of factors affecting proliferation and flourishment of Trichoderma harzianum in Egyptian soil. Journal of Basic & Applied Mycology, 3, 41–48.

Amaria, W., Harni, R., & Samsudin. (2015). Evaluasi jamur antagonis dalam menghambat pertumbuhan Rigidoporus microporus penyebab penyakit jamur akar putih pada tanaman karet. J. TIDP, 2(1), 51–60. https://doi.org/10.21082/jtidp.v2n1.2015.p51-60

Amaria, W., Soesanthy, F., & Ferry, Y. (2016). Keefektifan biofungisida Trichoderma spp. dengan tiga jenis bahan pembawa terhadap jamur akar putih Rigidoporus microporus. J. TIDP, 3(3), 37–44. http://dx.doi.org/ 10.21082/jtidp.v3n3.2016.p159-166

Amaria, W., Taufiq, E., & Harni, R. (2013). Seleksi dan identifikasi jamur antagonis sebagai agens hayati jamur akar putih (Rigidoporus microporus) pada tanaman karet. Buletin RISTRI, 4(1), 55–64. https://doi.org/ 10.21082/jtidp.v4n1.2013.p55-64

Amaria, W., & Wardiana, E. (2014). Pengaruh waktu aplikasi dan jenis Trichoderma terhadap penyakit jamur akar putih pada bibit tanaman karet. J. TIDP, 1(2), 79–86. http://dx.doi.org/10.21082/jtidp.v1n2. 2014.p79-86

Ben-david, A., & Davidson, C. E. (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods, 107, 214–221. https://doi.org/10.1016/ j.mimet. 2014.08.023

Berlian, I., Setyawan, B., & Hadi, H. (2013). Mekanisme antagonisme Trichoderma spp. terhadap beberapa patogen tular tanah. Warta Perkaretan, 32(2), 74–82.

Boggie, L. M., & Person, H. (1988). Plant roots and their environment. Development in agricultural and manage forest. Uppsala Sweden.

Christopher, D. J., Raj, T. S., Rani, S. U., & Udhayakumar, R. (2010). Role of defence enzymes activity in tomato as induced by Tichoderma virens against Fusarium wilt caused by Fusarium oxysporum F. Sp. Lycopersici. Journal of Biopestcides, 3(1), 158–162.

Cuervo-parra, J. A., Ramirez-Suero, M., Sánchez-lópez, V., & Ramirez-Lepe, M. (2011). Antagonistic effect of Trichoderma harzianum VSL291 on phytopathogenic fungi isolated from cocoa (Theobroma cacao L.) fruits. African Journal of Biotechnology, 10(52), 10657–10663. https://doi.org/10.5897/AJB11.1333

Fairuzah, Z., Dalimunthe, C. I., Karyudi, Suryaman, & Widhayati, E. E. (2014). Keefektifan beberapa fungi antagonis (Trichoderma spp.) dalam biofungisida endohevea terhadap penyakit jamur akar putih (Rigidoporus microporus) di lapangan. Jurnal Penelitian Karet, 32(2), 122–128.

Gupta, V. G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., & Touhy, M. (2014). Biotechnology and Biology of Trichoderma. Amsterdam, Netherlands - Elsevier Science & Technology.

Gupta, V., & Sharma, A. K. (2013). Assessment of optimum temperature of Trichoderma harzianum by monitoring radial growth and population dynamics in different compost manures under different temperature. Journal of Biosciences, 1(2), 151–157.

Gveroska, B. (2013). Relationships of Trichoderma spp. quantity in soil to reducing the dampingoff in tobacco seedlings. Bulgarian Journal of Agricultural Science, 19(4), 666–674.

Harni, R., Amaria, W., Syafaruddin, & Mahsunah, A. H. (2017). Potensi metabolit sekunder Trichoderma spp. untuk mengendalikan penyakit vascular streak dieback (VSD) pada bibit kakao. J. TIDP, 4(2), 57-66. tp://dx.doi.org/10.21082/jtidp.v4n2.2017.p57-66

Hermosa, R., Cardoza, R. E., Rubio, M. B., Gutierrez, S., & Monte, E. (2014). Secondary metabolism and antimicrobial metabolites of Trichoderma. Biotechnology and Biology of Trichoderma, (February), 115–121. https://doi.org/10.1016/B978-0-444-59576-8.00009-6

Khattabi, N., Ezzahiri, B., Louali, L., & Oihabi, A. (2004). Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 24, 281–288. https://doi.org/10.1051/agro: 2004026

Kusdiana, A. P. J., Munir, M., & Suryaningtyas, H. (2015). Pengujian biofungisida berbasis mikroorganisme antagonis untuk pengendalian jamur akar putih pada tanaman karet. Jurnal Penelitian Karet, 33(2), 143–156.

Maina, P. K., Wachira, P. M., Okoth, S. A., Kimenju, J. W., & Otipa, M. (2015). Effects of land-use intensification on distribution and diversity of fusarium species in Machakos County, Kenya. Journal of Agricultural Science, 7(4), 48–60. https://doi.org/10.5539/jas.v7n4p48

Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma-plant-pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52(4), 522–529. https://doi.org/10.1007/ s12088-012-0308-5

Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma: A genomic perspective. Microbiology, 158, 35–45. https://doi.org/ 10.1099/mic.0.053629-0

Mukherjee, P. K., Wiest, A., Ruiz, N., Keightley, A., Moran-Diez, M. E., Mccluskey, K., … Kenerley, C. M. (2011). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. Journal of Biological Chemistry, 286(6), 4544–4554. https://doi.org/ 10.1074/jbc.M110.159723

Muniappan, V., & Muthukumar, T. (2014). Influence of crop species and edaphic factors on the distribution and abundance of Trichoderma in alfisol soils of Southern India. Acta Botanica Croatica, 73(1), 37–50. https://doi.org/10.2478/botcro-2013-0004

Nakkeeran, S., Krishnamoorthy, A. S., Ramamoorthy, V., & Renukadevi, P. (2002). Microbial inoculants in plant disease control. Journal of Ecobiology, 14(2), 83–94.

Okoth, S. A., Okoth, P., & Muya, E. (2009). Influence of soil chemical and physical properties on occurrence of Trichoderma spp. in Embu, Kenya. Tropical and Subtropical Agroecosystems, 11, 303–312. Retrieved from http://www.redalyc.org/ pdf/939/939130 57006.pdf

Omorusi, V., Eguavoen, O., Ogbebor, N., Bosah, B. O., Orumwense, K., & Ijie, K. (2014). Control of white root rot disease in rubber plantations in Nigeria. International Journal of Microbiology and Immunology Research, 3(4), 46–51.

Prasetyo, J., Aeny, T. N., & Suharjo, R. (2009). The corelations between white rot (Rigidoporus lignosus L.) incidence and soil characters of rubber ecosystem in Penumbangan Baru, Lampung. Journal HPT Tropika, 9(2), 149–157.

Promwee, A., Issarakraisila, M., Intana, W., Chamswarng, C., & Yenjit, P. (2014). Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. Journal of Agricultural Science, 6(9), 8–20. https://doi.org/ 10.5539/jas.v6n9p8

Rajput, A. Q., Khanzada, M. A., & Shahzad, S. (2014). Effect of different substrates and carbon and nitrogen sources on growth and shelf life of Trichoderma pseudokoningii. International Journal of Agriculture & Biology, 16(5), 893–898.

Reetha, S., Bhuvaneswari, G., Selvakumar, G., Thamizhiniyan, P., & Pathmavathi, M. (2014). Effect of temperature and pH on growth of fungi Trichoderma harzianum. Journal of Chemical, Biological and Physical Sciences, 4(4), 3287–3292.

Santos, B. D. L., Barrau, C., Blanco, C., Arroyo, F., & Porras, M. (2003). Relationship between Trichoderma soil populations and strawberry fruit production in previously fumigated soils. HORTSCIENCE, 38(7), 1400–1402.

Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A., & Kumar, V. (2014). Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virology & Mycology, 3(1), 1–7. https://doi.org/10.4172/ 2161-0517.100012

Sriram, S., Roopa, K. P., & Savitha, M. J. (2011). Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop Protection, 30(10), 1334–1339. https://doi.org/ 10.1016/j.cropro.2011.06.003

Sundaramoorthy, S., & Balabaskar, P. (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology & Biotechnology, 1(3), 36–40. https://doi.org/10.7324/JABB.2013.1306

Suwandi. (2008). Evaluasi kombinasi isolat Trichoderma mikoparasit dalam mengendalikan penyakit akar putih pada bibit karet. J. HPT Tropika, 8(1), 55–62.

Thomas, P., Sekhar, A. C., Upreti, R., Mujawar, M. M., & Pasha, S. S. (2015). Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports, 8, 45–55. https://doi.org/10.1016/j.btre.2015.08.003

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., … Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8(1), 127–139. https://doi.org/10.2174/ 1874437001408010127

Wirawan, A. E., Djauhari, S., & Sulistyowati, L. (2014). Analisis perbedaan pengaruh penerapan sistem PHT dan konvensional terhadap kenanekaragaman Trichoderma spp. pada lahan padi. Hama Penyakit Tumbuhan, 2(3), 66–73.

Zehra, A., Dubey, M. K., Meena, M., & Upadhyay, R. S. (2017). Effect of different environmental conditions on growth and sporulation of some Trichoderma species. Journal of Environmental Biology, 38(2). https://doi.org/10.22438/jeb/38/2/MS-251

DOI: http://dx.doi.org/10.21082/jtidp.v5n2.2018.p1-10


  • There are currently no refbacks.

Copyright (c) 2018 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.699/AU2/P2MI-LIPI/10/2015 on Oktober 30, 2015 by Indonesian Institute of Science


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id

View My Stats