Genetic Variation Within Population of Yellow-Berried Arabica Coffee Cultivars at Farmers Field Based on SSRs Markers

Dani Dani, Nur Kholilatul Izzah, Enny Randriani

Abstract


Identification of the genetic diversity within populations of yellow-berried Arabica coffee cultivar based on morphological characters faced an obstacle in finding identical environmental conditions at farmers field. Therefore, an approach which is not influenced by differences in environmental conditions is required, for instance based on DNA polymorphism. The research aimed to analyze genetic variation within populations of yellow-berried Arabica coffee cultivar based on SSRs markers. The research was conducted in the Integrated Laboratory, Indonesian Industrial and Beverage Crops Research Institute, Sukabumi, from April until June 2015. The leaf samples for DNA extraction were obtained from yellow-berried Arabica coffee cultivar (AGK-1) and two red-berried cultivars  as controls, namely  ABP-1 (dwarf type) and Typica (tall type). AGK-1 and ABP-1 cultivars consisted of 17 and 5 individual numbers, respectively, whereas Typica cultivar comprised three individuals. PCR amplification was carried out using 12 SSR primers. Four primers (M24, SSRCa052, M32, and M42) produced polymorphic band. The binary data obtained in this research was subsequently processed using NTSYS-PC program version 2.1. The genotypes were grouped  based on a genetic similarity matrix using the unweighted pair group method arithmetic mean (UPGMA). The result showed the existence of genetic variation among individual of AGK-1 cultivars, which forming three clusters at the genetic similarity value of 67%. One cluster exhibited close genetic relationships between some individuals within the population of AGK-1 cultivar and Typica cultivar. Meanwhile, the other two clusters showed high genetic similarity between AGK-1 cultivar and ABP-1 cultivar. The result demonstrated the possibility of gene flow between genotypes or residual heterozygosity within the population of  AGK-1 cultivar at farmers field, which required a further study.


Keywords


Arabica coffee; intra cultivar; yellow berry; genetic variability; SSRs

Full Text:

PDF (Indonesian)

References


Andreazi, E., Sera, G. H., de Faria, R. T., Sera, T., Shigueoka, L. H., Carvalho, F. G., & Carducci, F. C. (2015). Resistance to Meloidogyne paranaensis in Coffea arabica L. progenies. Australian Journal of Crop Science, 9(12), 1190–1196.

Bailey, D. W. (1978). Sources of subline divergence and their relative importance for sublines of six major inbred strains of mice. doi: http://doi.org/10.1016/ B978-0-12-507850-4.50020-2.

Baliza, D. P., Cunha, R. L., Guimarães, R. J., Barbosa, J. P. R. A. D., Ávila, F. W., & Passos, A. M. A. (2012). Physiological characteristics and development of coffee plants under different shading levels. Revista Brasileirade Ciencias Agrarias, 7(1), 37–43. doi: http://doi.org/10.5039/agraria.v7i1a1305.

Brokaw, J. (2013). Pollinator habitat availability and diversity in various tropical agroforestry management systems of Coffea arabica in Santa Clara, Chiriqui (Independent Study Project (ISP) Collection. Paper 1597).

Carvalho, A., Monaco, L. C., & Fazuoli, L. C. (1979). Coffee breeding: XL-progenies and hybrids of the catuaí cultivar. Bragantia [Online], 38(1), 203–216. doi: http://doi.org/http://dx.doi.org/10.1590/ S0006-87051979000100022.

Carvalho, E., Franceschi, P., Feller, A., Herrera, L., Palmieri, L., Arapitsas, P., … Martens, S. (2016). Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics, 12(9), 144. doi: http://doi.org/10.1007/s11306-016-1090-x.

Combes, M. C., Andrzejewski, S., Anthony, F., Bertrand, B., Rovelli, P., Graziosi, G., & Lashermes, P. (2000). Characterization of microsatellite loci in Coffea arabica and related coffee species. Molecular Ecology, 9, 1178–1180. doi: http://doi.org/ 10.1046/j.1365-294x.1998.00406.x.

Geleta, M., Herrera, I., Monzón, A., & Bryngelsson, T. (2012). Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers. The Scientific World Journal, 2012, 939820. doi: http://doi.org/10.1100/2012/ 939820.

Gimase, J. M., Thagana, W. M., Kirubi, D. T., Gichuru, E. K., & Gichimu, B. M. (2011). Genetic characterization of arabusta coffee hybrids and their parental genotypes using molecular markers. Plant Cell Biotechnology and Molecular Biology, 15(2), 31–42.

Gomez, C., Batti, A., Le Pierrès, D., Claudine, C., Serge, H., Alexandre, de K., … Valérie, P. (2010). Favourable habitats for Coffea inter-specific hybridization in central New Caledonia: Combined genetic and spatial analyses. Journal of Applied Ecology, 47(1), 85–95. doi: http://doi.org/10.1111/j.1365-2664.2009.01762.x.

Gomez, C., Despinoy, M., Hamon, S., Hamon, P., Salmon, D., Doffou, S., … Poncet, V. (2016). Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species. Ecology and Evolution, 6(10), 3240–3255. doi: http://doi.org/ 10.1002/ece3.2055.

Izzah, N. K., Randriani, E., & Dani. (2015). Analisis kekerabatan genetik kultivar kopi arabika berbuah kuning dan berbuah merah berdasarkan marka SSR. J. TIDP, 2(3), 113–122. doi: http://dx.doi.org/ 10.21082/jtidp.v2n3.2015.p113-122.

Jiang, G. (2010). Molecular markers and marker-assisted breeding in plants. In S. B. Andersen (Ed.), Plant breeding from laboratories to fields (pp. 45–83). InTech. doi: http://doi.org/http://dx.doi.org/10.5772/ 52583.

Kathurima, C. W., Kenji, G. M., Muhoho, S. M., Boulanger, R., Gichimu, B. M., Gichuru, E. K., & Kathurima C. W. (2012). Genetic diversity among commercial coffee varieties, advanced selections and museum collections in Kenya using molecular markers. International Journal of Biodiversity and Conservation, 4(2), 39–46. doi: http://doi.org/ 10.5897/IJBC11.231.

Kiguongo, A. P. K., Omondi, C. O., Gichuru, E. K., & Kasili, C. O. (2014). Analysis of simple sequence repeat markers linked to coffee berry disease resistance genes in a segregating population of arabica coffee (Coffea arabica L .). Int. J. Biotechnol. Food Sci., 2(December), 156–166.

Krug, C. A., Mendes, J. E. T., & Carvalho, A. (1949). Taxonomia de Coffea arabica L.: II - Coffea arabica L. Var. Caturra e sua forma Xanthocarpa. Bragantia, 9(9–12), 157–163. doi: http://doi.org/10.1017/ CBO9781107415324.004.

Lijavetzky, D., Ruiz-García, L., Cabezas, J. A., Andrés, M. T. De, Bravo, G., Ibáñez, A., … Martínez-Zapater, J. M. (2006). Molecular genetics of berry colour variation in table grape. Molecular Genetics and Genomics, 276(5), 427–435. doi: http://doi.org/ 10.1007/s00438-006-0149-1.

Liu, K., & Muse, S.V. (2005). PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 21, 2128–2129.

Maluf, M. P., Silvestrini, M., Ruggiero, L. M. de C., Guerreiro Filho, O., & Colombo, C. A. (2005). Genetic diversity of cultivated Coffea arabica inbred lines assessed by RAPD, AFLP and SSR marker systems. Scientia Agricola, 62(4), 366–373. doi: http://doi.org/10.1590/S0103-901620050004000 10.

Mishra, M. K., & Slater, A. (2012). Recent advances in the genetic transformation of coffee. Biotechnology Research International. doi: http://doi.org/10.1155/ 2012/580857.

Missio, R., Caixeta, E., Zambolin, E., Zambolin, L., Cruz, C., & Sakiyama, N. (2010). Polymorphic information content of SSR markers for Coffea spp. Crop Breeding and Applied Biotechnology, 10, 89–94.

Missio, R. F., Caixeta, E. T., Zambolim, E. M., & Sakiyama, N. S. (2009). Development and validation of SSR markers for Coffea arabica L. Crop Breeding and Applied Biotechnology, 9, 361–371.

Motta, L. B., Soares, T. C. B., Ferrão, M. A. G., Caixeta, E. T., Lorenzoni, R. M., & Neto, J. D. de S. (2014). Molecular characterization of arabica and conilon coffee plants genotypes by SSR and ISSR markers. Brazilian Archives of Biology and Technology, 57(5), 728–735. doi: http://doi.org/10.1590/S1516-8913201402071.

Moura, W. de M., Soares, Y. J. B., Júnior, A. T. do A., de Lima, P. C., Martinez, H. E. P., & Gravina, G. de A. (2015). Genetic diversity in Arabica coffee grown in potassium-constrained environment. Ciênc. Agrotec., Lavras, 39(1), 23–31.

Noirot, M., Charrier, A., Stoffelen, P., & Anthony, F. (2015). Reproductive isolation, gene flow and speciation in the former Coffea subgenus: A review. Trees, 30(3), 597–608. doi: http://doi.org/ 10.1007/s00468-015-1335-8.

Pereira, T. B., Setotaw, T. A., Santos, D. N., Carvalho, G. R., Rezende, R. M., & Lavras, U. F. De. (2016). Identification of microsatellite markers in coffee associated with resistance to Meloidogyne exigua. Genetics and Molecular Research, 15(3), 2–3. doi: http://doi.org/http://dx.doi.org/10.4238/gmr.15038054.

Randriani, E., Dani, & Wardiana, E. (2014). Evaluasi Ukuran Biji Beras, Kadar Kafein, dan Mutu Cita Rasa Lima Kultivar Kopi Arabika. Jurnal Tanaman Industri dan Penyegar, 1(1), 49–56. doi: http://dx.doi.org/ 10.21082/jtidp.v1n1.2014.p49-56.

Rohlf, F.J. (2000). NTSYS-PC, numerical taxonomy system for the PC, ExeterSoftware, Ver. 2.1. Setauket: Applied Biostatistics Inc.

Rubiyo, Izzah, N.K., Sulistiyorini, I., & Tresniawati, C. (2015). Evaluation of genetic diversity in cacao collected from kolaka, Southeast Sulawesi, using SSR markers. Indones. J. Agric. Sci., 16(2), 71–78.

Rustioni, L., Rocchi, L., & Failla, O. (2015). Effect of anthocyanin absence on white berry grape (Vitis vinifera L.). Vitis - Journal of Grapevine Research, 54, 239–242.

Sera, T., Ruas, P. M., Ruas, C. D. F., Diniz, L. E. C., Carvalho, V. D. P., Rampim, L., … Silveira, S. R. Da. (2003). Genetic polymorphism among 14 elite Coffea arabica L. cultivars using RAPD markers associated with restriction digestion. Genetics and Molecular Biology, 26(1), 59–64. doi: http://doi.org/10.1590/S1415-47572003000100 010.

Silva, S. de A., de Queiroz, D. M., Ferreira, W. P. M., Corrêa, P. C., & Rufino, J. L. dos S. (2015). Mapping the potential beverage quality of coffee produced in the Zona da Mata, Minas Gerais, Brazil. Journal of the Science of Food and Agriculture, 96, 3098–3108. doi: http://doi.org/10.1002/jsfa.7485.

Steiger, D. L., Nagai, C., Moore, P. H., Morden, C. W., Osgood, R. V, & Ming, R. (2002). AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Genet, 105, 209–215. doi: http://doi.org/10.1007/s00122-002-0939-8.

Teressa, A., Crouzillat, D., Petiard, V., & Brouhan, P. (2010). Genetic diversity of Arabica coffee (Coffea arabica L.) collections. Ethiopian Journal of Applied Sciences and Technology, 1(1), 63–79.

Tran, T. M. H. (2005). Genetic variation in cultivated coffee (Coffea arabica L.) accessions in northern New South Wales, Australia. Lismore, NSW: Southern Cross University.

Tuan, P. A., Bai, S., Yaegaki, H., Tamura, T., Hihara, S., Moriguchi, T., & Oda, K. (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 15(1), 280. doi: http://doi.org/10.1186/s12870-015-0664-5.

Wei, H., Chen, X., Zong, X., Shu, H., Gao, D., & Liu, Q. (2015). Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS ONE, 10(3), 1–20. doi: http://doi.org/10.1371/ journal.pone.0121164.

Yu, Q., Guyot, R., Kochko, A. De, Byers, A., Navajas-pe, R., Langston, B. J., … Ming, R. (2011). Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). The Plant Journal, 67, 305–317. doi: http://doi.org/ 10.1111/j.1365-313X.2011.04590.x.

Zambolim, L. (2016). Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology, 41(1), 1–8. doi: http://doi.org/10.1007/s40858-016-0065-9.

Zhang, M., Mao, W., Zhang, G., & Wu, F. (2014). Development and characterization of polymorphic ESTSSR and genomic SSR markers for tibetan annual wild barley. PLoS ONE, 9(4), 1–10. doi: http://doi.org/10.1371/journal.pone.0094881.

Zhang, Y., Li, W., Dou, Y., Zhang, J., Jiang, G., Miao, L., … Zhang, Z. (2015). Transcript quantification by RNA-Seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PLoS ONE, 10(12), 1–15. doi: http://doi.org/10.1371/ journal.pone.0144356.




DOI: http://dx.doi.org/10.21082/jtidp.v3n2.2016.p83-94

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats