The Effect of Cytokinins, Explant Types, and Genotypes on Cacao Somatic Embryogenesis

Nur Ajijah, RR. Sri Hartati

Abstract


Information on the effect of cytokinins on cacao (Theobroma cacao L.) primary somatic embryogenesis and its interaction with explant types and genotypes is not yet known. This study aimed to evaluate the effect of cytokinins and its interaction with explant types and genotypes on cacao somatic embryogenesis. The study was conducted at tissue culture laboratory of IAARD, Bogor from April until December 2012 and October 2014 until February 2016. Three types of cytokinins i.e. kinetin (0.58, 1.16, and 2.32 μM), thidiazuron (0.01, 0.02, and 0.04 μM) and benzylaminopurine (0.55, 1.11, and 2.22 μM) in combination with 9 μM 2,4-D were tested for their effectiveness in inducing somatic embryogenesis from petals and staminoid explants of Cimanggu 1 genotype. Furthermore, three levels of kinetin (0.58, 1.16, and 2.32 μM) also in combination with 9 μM 2,4-D were evaluated for their influences on the somatic embryogenesis from petals and staminoid explants of three cacao genotypes i.e. Sulawesi 02, ICCRI 04 and Cimanggu 3. The result demonstrated that 2.32 μM kinetin and staminoids explant were more effective to induce cacao somatic embryogenesis of Cimanggu 1 genotype (7%, 0.23 embryos/explant). Additionally, there were interaction effects between the level of kinetin with explant types and genotype on the percentage of explants forming embryo at 12 weeks after culture. The highest percentage of somatic embryo formation was shown by ICCRI 04 genotype with the use of petals explant and a kinetin level of 1.16 μM (31.85%), but not significantly different from the level of kinetin 2.23 μM (25.55%). The formation of primary somatic embryos of cacao is largely determined by the type and level of cytokinins, type of explant, and genotype.


Keywords


Theobroma cacao L.; cytokinins; genotypes; somatic embryos; explants types

Full Text:

PDF (Indonesian)

References


Ajijah, N., Hartati, S., Rubiyo, R., Sukma, D., & Sudarsono, S. (2016). Effective cacao somatic embryo regeneration on kinetin supplemented medium DKW medium and somaclonal variation assessment using SSRs markers. AGRIVITA Journal of Agricultural Science, 38(1), 80–92. doi: http://doi.org/10.17503/ agrivita.v38i1.619.

Ajijah, N., Rubiyo, & Sudarsono. (2014). Pembentukan kalus dan embrio somatik kakao menggunakan thidiazuron melalui satu tahap induksi kalus. Jurnal Penelitian Tanaman Industri, 20(4), 179–186.

Avivi, S., Hardjosoedarmo, S., & Hartanto, S. P. (2012). Perbandingan media Murashige & Skoog dan Penn State Cacao untuk embriogenesis somatik dari eksplan beberapa bagian bunga kakao. Bionatura-Jurnal Ilmu-Ilmu Hayati dan Fisik, 14(l1), 68–77.

Brown, J. S., Phillips-mora, W., Power, E. J., Krol, C., Cervantes-martinez, C., Motamayor, J. C., & Schnell, R. J. (2007). Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in Theobroma cacao L ., (October), 1851–1858. doi: http://doi.org/10.2135/cropsci2006.11.0753.

Ghaemi, M., Majd, A., Fallahian, F., & Bezdi, K.G. (2011). Comparison of callus induction and somatic embryogenesis of some Iranian cottons (Gossypium spp.) and histology of somatic embryogenesis. African J Bio.,10, 2915–2922.

Górska-Koplińska, K., Źróbek-Sokolnik, A., Górecki, R. J., Michalczyk, D. J., & Michalczyk, D. J. (2010). The effect of explant type on somatic embryogenesis induction in Pisum sativum L. Polish Journal of Natural Science, 25(3), 229–235. doi: http://doi.org/ 10.2478/v10020-010-0020-z.

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159–73. doi: http://doi.org/10.1105/ tpc.113.116053.

Jimenez, V.M. (2001). Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. R Bras Fisiol Veg., 13, 196–223.

Kepczynska, E., & Kepczynski, J. (2012). Phytohormones in Medicago spp. somatic embryogenesis. BioTechnologia Session I. Plant differen., 93, 153.

Li, Z.T., Kim, K.H., Dhekney, S. a, Jasinski, J. R., Creech, M. R., & Gray, D. J. (2014). An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis. Horticulture Research, 1(April), 14027. doi: http://doi.org/10.1038/hortres.2014.27.

Li, Z., Traore, A., Maximova, S., & Guiltinan, M. J. (1998). Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using thidiazuron. In Vitro Cell. Dev. Biol-Plant, 34, 293–299.

Lomin, S. N., Yonekura-sakakibara, K., Romanov, G. A., & Sakakibara, H. (2011). Ligand-binding properties and subcellular localization of maize cytokinin receptors. Journal of Experimental Botany, 62(14), 5149–5159. doi: http://doi.org/10.1093/jxb/err220.

Malabadi, R.B., Vijaykumar, S., Nataraja, K., & Mulgund, G.S. (2010). Induction of somatic embryogenesis and plant regeneration in grapes (Vitis vinifera L.). Bot. Research Inter., 3, 48–55.

Malik, M. (2012). Different kinds of cytokinin effect on Narcissus L. “Actaceae” somatik embryo development in solid and liquid/solid culture system. BioThchnologia, 93(2), 168.

Mongomake, K., Doungous, O., Khatabi, B., & Fondong, V. N. (2015). Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon. SpringerPlus, 4(1), 477. doi: http://doi.org/10.1186/s40064-015-1272-4.

Nawrot-Chorabik, K. (2011). Somatic embryogenesis in forest plants. In Embryogenesis (pp. 424–446). Retrieved from http://cdn.intechopen.com/ pdfs/35578/intech-somatic_embryogenesis_in_ forest_plants.pdf.

Ngugi, M., Oduor, R. O., Omwoyo, R. O., Njadi, J. M., Mgutu, A. J., & Cheruiyot, R. C. (2015). Regeneration of Kenyan Cassava (Manihot Esculenta Crantz) Genotypes. Journal of Plant Biochemistry & Physiology, 3(2), 147. doi: http://doi.org/10.4172/ 2329-9029.1000147

Nyaboga, E.N., Njiru, J.M., & Tripathi, L. (2015). Factors influencing somatic embryogenesis, regeneration and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. Frontiers in Plant Science, 6, 1–13. doi: http://doi.org/10.3389/ fpls.2015.00411.

Priyanka, Upendhar, K., & Singh, K. P. (2015). Indirect, direct and secondary somatic embryogenesis in Emblica officinalis. Global Journal for Research Analysis, 4(4), 1–4.

Saad, A. I. M., & Elshahed, A. M. (2012). Plant tissue culture media. Recent advances in plant in vitro culture. doi: http://doi.org/10.1007/BF02796489.

Sakakibara, H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57(1), 431–449. doi: http://doi.org/10.1146/annurev. arplant.57.032905.105231

Sefasi, A., Kreuze, J., Ghislain, M., Manrique, S., Kiggundu, A., & Ssemakula, G. (2012). Induction of somatic embryogenesis in recalcitrant sweetpotato (Ipomoea batatas L.) cultivars, 11(94), 16055–16064. doi: http://doi.org/10.5897/AJB12.1615.

Stefanello, S., Vesco, L., Ducroquet, J.P., Nodari, R.O., Guerra, M.P. (2005). Somatic embryogenesis from floral tissues of feijoa (Feijoa sellowiana Berg.). Sci Hort., 105, 117–126.

Vondráková, Z., Krajňáková, J., Fischerová, L., Vágner, M., & Eliášová, K. (2016). Physiology and role of plant growth regulators in somatic embryogenesis. In S. P. Park, J. M. Bonga, & H. K. Moon (Eds.), Vegetatif propagation of forest trees. Seoul, Korea: National Institute of Forest Science.

Wongtiem, P., Courtois, D., Florin, B., Juchaux, M., Peltier, D., Broun, P., & Ducos, J. P. (2011). Effects of cytokinins on secondary somatic embryogenesis of selected clone Rayong 9 of Manihot esculenta Crantz for ethanol production. African Journal of Biotechnology, 10(9), 1600–1608. doi: http://doi. org/10.5897/AJB10.1820

Zuyasna, Hafsah, S., Fajri, R., Syahputra, M.O., & Ramadhan, G. (2012). The effect of picloram concentrations and explants types on the induction of somatic embryo on North Aceh Cocoa genotype. Proceeding of The 2th Annual International Conference Syih Kuala Univercity & The 8th IMT-GT Uninet Bioscience Conference, 2, 395–398.




DOI: http://dx.doi.org/10.21082/jtidp.v3n2.2016.p71-82

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats