Response of Cacao Seedlings to Ameliorant, Phosphate Solubilizing Microbes, and Phosphate Fertilizers in Acid Soil

Kurnia Dewi Sasmita, Iswandi Anas, Syaiful Anwar, Sudirman Yahya, Gunawan Djajakirana

Abstract


The growth of cacao in acid soils is commonly limited by some problems such as low available P and pH, and high Al saturation. Therefore, research is needed to solve the problem of coffee cultivation in acid soil. This study aimed to determine the effect of ameliorant, phosphate solubilizing microbes (PSM), and phosphate fertilizers (P) on the growth and nutrient uptake of cacao seedlings, and some acid soil properties. The study used a randomized block design with 3 factors and 3 replications. The first factor was ameliorant applications (without ameliorant, 10% organic fertilizer, 4% rice husk biochar, 4% rice husk biochar + 10% organic fertilizer). The second factor was PSM applications: without PSM, Burkholderia ambifaria (BPF) inoculants, and Aspergillus niger (FPF) inoculants. The third factor was P fertilizers applications (without Phosphate Rock (PR), 100, 200, and 400 mg P/kg of PR, and 400 mg P/kg of SP-36). The results showed that the applications of 4% rice husk biochar + 10% organic fertilizer + BPF or FPF inoculants increase the number of leaves by 77.9% and 69.2%, respectively, and increase the dry weight of shoot by 93.6 % and 101.9%, respectively. Phosphate rock application in media without organic fertilizer increases dry weight of shoots and roots of cacao seedlings, and the uptake of P, Ca, and Mg in shoots linearly in line with the increase of PR dose to 400 mg P/kg. Application of rice husk biochar significantly increased the acid phosphatase activity of growing media. Meanwhile, organic fertilizer increased the soil pH, acid phosphatase and available P activity, and decreased Al-dd growing media.

Keywords


Aspergillus niger; Burkholderia ambifaria; nutrient uptake; organic fertilizer; rice husk biochar

Full Text:

PDF (Indonesian)

References


Adhya, T. K., Kumar, N., Reddy, G., Podile, A. R., Bee, H., & Samantaray, B. (2015). Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Current Science, 108(7), 1280–1287.

Akça, M. O., & Namlı, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato , pepper and lettuce plants growth. Eurasian J Soil Sci, 4(3), 161–168.

Awais, M., Tariq, M., Ali, A., Ali, Q., Khan, A., Tabassum, B., Husnain, T. (2017). Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatalysis and Agricultural Biotechnology, 11, 312–321.

Baligar, V. C., & Fageria, N. K. (2005). Soil aluminum effects on growth and nutrition of cacao. Soil Sci. Plant Nutr, 51(5), 709–713.

Castro-gonzález, R., Martínez-aguilar, L., Ramírez-trujillo, A., los Santos, P. E., & Caballero-Mellado, J. (2011). High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil. https://doi.org/10.1007/s11104-011-0768-0

Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014, 6 p. https://doi.org/http://dx.doi.org/10.1155/2014/506356

Chen, J., Wu, J., & Huang, W. (2001). Effects of compost on the availability of nitrogen and phosphorus in strongly acidic soils. FFTC.

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

de Aquino, S. T. M., dos Santos, R. F., & Batista, K. D. (2019). Nutritional deficiency symptoms of young ‘cedro doce’ plants grown under macronutrient omission. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 264–270. https://doi.org/http://dx.doi.org/10.1590/1807-1929/agriambi.v23n4p264-270

Deluca, T. H., Mackenzie, M. D., & Gundale, M. J. (2009). Biochar effects on soil nutrient transformations. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 251–270). Earthscan.

Djuniwati, S., Nugroho, B., & Pulunggono, H. B. (2012). The changes of P-fractions and solubility of phosphate rock in ultisol treated by organic matter and phosphate rock. 17(3), 203–210. https://doi.org/10.5400/jts.2012.17.3.203

Hale, L. E. (2014). Biochar and plant growth promoting rhizobacteria as soil amendments. Electronic Theses and Dissertations UC Riverside.

Haynes, R. J., & Mokolobate, M. S. (2001). Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues : a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59, 47–63.

Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture - A review. Agron. Sustain. Dev., 27, 29–43. https://doi.org/10.1051/agro

Khoi, C. M., Guong, V. T., Trung, P. N. M., & Nilsson, S. I. (2010). Effects of compost and lime amendment on soil acidity and N availability in acid sulfate soil. World Congress of Soil Science, Soil Solutions for a Changing World, (1-6 August), 52–55.

Li, Y., Hwang, S., Huang, Y., & Huang, C. (2018). Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection, 110, 275–282. https://doi.org/10.1016/j.cropro.2017.03.021

Liu, C. H., Liu, Y., Fan, C., & Kuang, S. Z. (2013). The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple. Journal of Soil Science and Plant Nutrition, 13(2), 433–444.

Liu, X.-H., & Zhang, X.-C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau : results from incubation experiments. International Journal of Agriculture & Biology, 14(5), 745–750.

Margesin, R. (1996). Acid and alkaline phosphomonoesterase activity with the substrate p-nitrophenyl phosphate. In F. Schinner, R. Öhlinger, E. Kandeler, & M. R (Eds.), Methods in Soil Biology (pp. 213–215). Berlin, DE: Springer Press.

Marschner, H. (1993). Mineral nutrition of higher plants. London, GB: Academic Press Inc.

Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12, 567–572. https://doi.org/10.1007/BF00327716

Nath, D., Maurya, B. R., & Vijay, S. M. (2017). Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatalysis and Agricultural Biotechnology, 10, 174–181.

Nenwani, V., Doshi, P., Saha, T., & Rajkumar, S. (2010). Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. Journal of Yeast and Fungal Research, 1(1), 009–014.

Opala, P. A., Okalebo, J. R., & Othieno, C. O. (2012). Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. ISRN Agronomy, 2012, 10 p. https://doi.org/10.5402/2012/597216

Parani, K., & Saha, B. K. (2012). Prospects of using phosphate solubilizing pseudomonas as bio fertilizer. European Journal of Biological Sciences, 4(2), 40–44. https://doi.org/10.5829/idosi.ejbs.2012.4.2.63117

Parvage, M. M., Ulén, B., Eriksson, J., Strock, J., & Kirchmann, H. (2013). Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49(2), 245–250. https://doi.org/10.1007/s00374-012-0746-6

Sasmita, K. D., Anas, I., Anwar, S., Yahya, S., & Djajakirana, G. (2017). Application of biochar and organic fertilizer on acid soil as growing medium for cocoa (Theobroma cacao L.) seedlings. International Journal of Sciences: Basic and Applied Research, 36(5), 261–273.

Sasmita, K. D., Anwar, S., Yahya, S., & Djajakirana, G. (2017). Pengaruh pupuk organik dan arang hayati terhadap kualitas media pembibitan dan pertumbuhan kakao. Jurnal Tanaman Industri dan Penyegar, 4(2), 107–120.

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., … Zhang, F. (2011). Phosphorus Dynamics : From Soil to Plant 1. Plant Physiology, 156, 997–1005. https://doi.org/10.1104/pp.111.175232

Suparno, A. (2008). Tanggap morfofisiologi bibit kakao yang diberi Fosfat Alam Ayamuru Papua, asam humat, inokulasi FMA, dan bakteri pelarut fosfat. (Disertasi, Institut Pertanian Bogor).

Swaine, M., Obrike, R., Clark, J. M., & Shaw, L. J. (2013). Biochar alteration of the sorption of substrates and products in Soil Enzyme Assays. Applied and Environmental Soil Science, 2013, 5p. https://doi.org/10.1155/2013/968682

Takeda, M., Nakamoto, T., Miyazawa, K., Murayama, T., & Okada, H. (2009). Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Applied Soil Ecology, 42, 86–95. https://doi.org/10.1016/j.apsoil.2009.02.003

Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F. P., Lustrato, G., … Scippa, G. S. (2017). The effects of biochar and its combination with compost on lettuce ( Lactuca sativa L .) growth , soil properties , and soil microbial activity and abundance. International Journal of Agronomy, 2017, 12p.

Wessel, M. (1985). Shade and nutrition. In G. A. R. Wood & R. A. Las (Eds.), Cocoa (pp. 166–194). London, GB: Longman Group Ltd.

Whitelaw, M. A., Harden, T. J., & Helyar, K. R. (1999). Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31, 655–665.

Wong, M. T. F., & Swift, R. S. (2001). Application of fresh and humified organic matter to ameliorate soil acidity. In R. S. S. and K. M. Spark (Ed.), Understanding and Managing Organic Matter in Soils, Sediments, and Waters.

Yuan, J., Huang, L., Zhou, N., Wang, H., & Niu, G. (2017). Fractionation of inorganic phosphorus and aluminum in red acidic soil and the growth of Camellia oleifera. HortScience, 52(9), 1293–1297. https://doi.org/10.21273/HORTSCI12189-17

Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal. Microbiological Research, 169(1), 76–82. https://doi.org/10.1016/j.micres.2013.07.003




DOI: http://dx.doi.org/10.21082/jtidp.v7n1.2020.p39-52

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Tanaman Industri dan Penyegar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

P-ISSN: 2356-1297
E-ISSN: 2528-7222
Accredited No.30/E/KPT/2018 on Oktober 24, 2018 by Ministry of Research, Technology and Higher Education of the Republic of Indonesia

                    


Jurnal Tanaman Industri dan Penyegar (JTIDP) Editorial Office :

Indonesian Industrial and Beverage Crops Research Institute
Jl. Raya Pakuwon Km. 2, Parungkuda, Sukabumi 43357 Jawa Barat Indonesia
Telp : (0266) 6542181
Fax : (0266) 6542087
Email : jtidp@litbang.pertanian.go.iduppublikasi@gmail.com
Website : http://balittri.litbang.pertanian.go.id



View My Stats