Pemanfaatan Rhizobakteria untuk Mengendalikan Nematoda Puru Akar (Meloidogyne spp.) pada Kenaf (Hibiscus cannabinus L.)

Kristiana Sri Wijayanti

Abstract


Penyakit puru akar yang disebabkan oleh nematoda Meloidogyne spp merupakan salah satu penyakit penting pada tanaman kenaf (Hibiscus cannabinus L.). Infeksi yang parah dapat mengakibatkan gagal panen dan memicu terjadinya infeksi oleh patogen lain. Pada kenaf, infeksi nematoda yang parah dapat menimbulkan kematian dan penurunan produktifitas tanaman.  Aplikasi berlebihan bahan kimia dalam pengendalian penyakit puru akar dapat menyebabkan kerusakan lingkungan dan mengganggu ekosistem, karena residu kimia yang dihasilkan dapat mempengaruhi populasi mikroba lain.  Salah satu metode pengendalian yang dapat diaplikasikan adalah pemanfaatan rhizobakteria yang secara umum banyak terdapat pada rizosfer tanaman kenaf. Rhizobacteria memiliki kemampuan sebagai pengendali hayati. Beberapa mekanisme yang diterjadi dalam aplikasi rhizobakteria adalah mekanisme antagonisme dan ketahanan terimbas. Alternatif pengendalian yang dapat  dilakukan yaitu dengan cara pola tanam polikultur, pemanfaatan tanaman antagonis, teknik biofumigan, penggunaan ekstrak nabati serta aplikasi metabolit sekunder dari mikroba.Teknik pengendalian yang ramah lingkungan sangat perlu dilakukan dalam rangka mewujudkan pertanian berkelanjutan.  Dalam tinjauan ini dibahas peran rhizobakteria dalam pengendalian nematoda

 

Utilization of Rhizobacteria for Controlling Root-Knot Nematodes (Meloidogyne spp.) in Kenaf (Hibiscus cannabinus L.)

Root-knot nematode caused by Meloidogyne spp. is one of important diseases in kenaf (Hibiscus cannabinus L.). Severe infection resulting crop loss and causing synergy with other pathogens. In kenaf, severe nemathode infections can cause death and decrease the productivity of the plant. Nematicide applications caused environmental damage.   Negative impact of chemical nematicide can be reduced by using rhizobacteria. Application of nematicidal causing environmental damage and disrupt the ecosystem, effected microbial population and sustainable agriculture.  Environmentally-friendly-control methods are needed to secure of environment, so the negative impact of using mematicides can be suppressed by Rhizobateria.  Some mechanisme of rhizobacteria application are antagonism and resistance induction. Alternative control methodes can be done by polyculture planting system, utilization of antagonistic plant, biofumigan, using vegetable extracts and aplication of secondary metabolites  from microbes.  Environmentally friendly control techniques really need to be done in order to manifest sustainable agriculture. In this review we discuss the role of rhizobacteria to control  nematodes.


 


Keywords


kenaf; Meloidogyne spp; nematoda puru akar;root-knot;rhizobacteria

Full Text:

PDF

References


Agrios, G.N., 2005. Plant diseases caused by nematodes, 5th ed. Departemnt of Plant Pathology Universitas of Florida, New York.

Akhtar, A., Hisamuddin, M., Robab, A., Sharf, R., 2012. Plant Growth Promoting Rhizobacteria. An Overview. J. Nat. Prod. Plant Resour 2, 19–31.

Ashoub, A., Amara, M., 2010. Biocontrol Activity of same Bacteria Genera Againt Root-knot Nematoda Meloidogyne incognita. J Amer Sci 6, 321–328.

Chen, Y., Yang, W., Yang, C., Wang, S., 2017. Metal tolerant enterobacter sp. strain EG16 enhanced phytoremediation using hibiscus cannabinus via siderofphore mediated plant growt promoting under metal contamination. Plant Soil 413, 203–216.

Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E., 2005. Use of Plant Growth-Promoting Bacteria for Biologycal Control of Plant Diseases: Principles, Mechanims of Action, and Future Prospects. App Env. Microbio 71, 4951–4959.

Degenhardt, J., Gershenzon, I., Baldwin, Kessler, A., 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol 14, 169–176.

Fragniere, C., Serrano, M., Abou-Mansour, E., Metraux, J., L’Haridon, F., 2011. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585, 1847–1852.

Harni, R.M., Supramana, S., Sinaga, Giyanto, Supriadi, 2012. Mekanisme Bakteri Endofit Mengendalikan Nematoda Pratylenchus brachyrus Pada Tanaman Nilam. Bul. Litro 23, 102–114.

Hu, Q.P., Xu, J.G., 2011. A simple double-layered chrome azurol S agar (SDCASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr J Microbiol Res. 5, 4321–4327.

Jatav, P., Gupta, A., Ahirwar, S., Jatav, S., Jatav, A., Kushwaha, K., 2017. Production of plant growth hormones indole-3-acetic acid (iaa) using bacillus by batch fermentation. G.J.B.B 6, 112–116.

Kloepper, J., Ryu, C., Zhang, S., 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94, 1259 –1266.

Kremer, R., 2013. Interactions between the plants and microorganisms. Allelopath. J. 31, 51–70.

Kumar, A., Min-Jeong, K., Chul, K., Kumar, M., 2007. Role of Chitinase an β-1, 3-glucanase Activities Produced by Fluorescent Pseudomonas and In vitro Inhibition of Phytopthora capsici and Rhizoctonia solani. Can. Jour Microbiol 53, 207–212.

Lugtenberg, B., Kamilova, F., 2009. Plant-growth-promoting rhyzobacteria. Annu. Rev. microbiol, 63, 541–560.

Meena, S., Jonathan, E., Kavitha, P., 2012. Viability of Pseudomonas fluorescens in liquid formulation and its effect on plant growt promoting and inhibition of root knot nematode, Meloidogyne incognita. Madras Agric. J. 9, 850–853.

Mendoza, A., Kiewnick, S., Sikora, R., 2008. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root- knot nematode eloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci. Technol. 18, 377–389.

Mitkowski, N., Abawi, G., 2003. Root-kmot Nematodes. The plant health instruction. DOI:10.1094/PHI-I-2003-0917-01.

Mossello, A., 2010. A review of literatures related of using kenaf for pulp production (beating, fractionation, and recycled fiber). Mod. Appl. Sci. 4, 21–29.

Mugiastuti, E., Rahayuniati, R., Sulistyanto, P., 2012. Pemanfaatan Bacillus sp dan Pseudomonas fluorescens Untuk Mengendalikan Penyakit layu Tomat Akibat Sinergi R. solanacearum dan Meloidogyne sp. Pros. Semin. Nas. Pengemb. Sumberd. Pedesaan dan Kearifan Lokal Berkelanjutan II 72–77.

Oteino, N., Lally, R., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K., Dowling, D., 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol. Front Microbiol 6, 745–750.

Pieterse, C., Lenon, R., Van-derEnt, S., Van-Wees, S., 2009. Networking by Small-molecule Hormones in Plant Immunity. Nat Chamical Biol 5, 305–316.

Press, C., Wilson, M., Tuzun, S., Kloepper, J., 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interac. 6, 761–768.

Ramamoorthy, VR Viswanathan, T Raguchander, V., Prakasam, Samiyappan, R., 2001. Induction of Systemic resistance by Plant Growth Promoting Rhizobacteria in Crop Plants against Pest and Diseases. Crop Prot. 20, 1–11.

Reitz, M., Oger, P., Meyer, A., Niehaus, K., Farrand, S., Hallman, J., Sikora, R., Richard, S., 2002. Importance of the O-antigen, core-region and lipid A of rhizobial induction of systemicc resistance in potato to Globodera pallida. Nematology 4, 73–79.

Saleh, H., Abu-Gharbieh, W., Al-Banna, L., 1989. Augmentation of soil solarization effects by application of solar-heated water. Nematol. Medit 17, 127–129.

Shaul, O., David, R., Sinvani, G., Ginzberg, Ganon, D., Wininger, S., Badani, H., Ovdat, N., Kapulnik, Y., 2001. Plant defence response during arbuscular mycorriza symbiosis. Current advances in mycorrhizae research. The American Phytopathological Society St Paul Minnesota.

Siddiqui, J., Shaukat, S., 2004. Systemic Resistance in Tomato Induced by Biocontrol Bacteria Against the Root-knot Nematode. Meloidogyne javanica is Independent of Salicylic Acid Produstion. J. Phytopathol. 152, 48–54.

Stein, T., 2005. Bacillus subtilis antibiotics: structures, syntheses and specific fungtions. Mol Microbiol 56, 845–857.

Tahery, Y., Shukor, N., Abdul-Hamid, H., Abdullah, M., Norlia, B., 2011. Yaghoob Tahery, 2Nor Aini Ab Shukor, 2Hazandy Abdul-Hamid, 3Mohd Puad Abdullah and 4B. Norlia. Status of Root Knot Nematode Disease on Kenaf Cultivated on Bris Soil in Kuala Terengganu, Malaysia. World Appl. Sci. J. 15, 1287–1295.

Vanloon, L., 2001. Systemic Induced Resistance. Kluwer Academic Publisher.

Wescott, S., Kluepfel, D., 1993. Inhibition of Criconella xenoplax Egg Hatch by Pseudomonas aerofaciens. J Phytop 83, 1245–1249.

Wijayanti, K., Rahardjo, B., Himawan, T., 2017. Pengaruh rizobateri dalam meningkatkan kandungan asam salisilat dan total fenol tanaman terhadap penekanan nematoda puru akar. Bul. Tanam. tembakau, serat Miny. Ind. 9, 54–63.

Wijayanti, K., Rahardjo, B., Himawan, T., 2016. Pengaruh PGPRterhadap penekanan populasi nematoda puru akar (meloidogyne incognita (kofoid and white) chitwood) pada tanaman kenaf (hibiscus cannabinus L.). Bul. Tanam. Tembakau, Serat &Minyak Ind. 8, 30–39.

Zhang, F., Noe, J., 1999. Damage potential and reproduction of Meloidogyne incognita Race 3 and M. arenaFria Race 1 on Kenaf. J Nematol 28, 668–675.




DOI: http://dx.doi.org/10.21082/btsm.v10n2.2018.90-99

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

          


Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121
Email: balittas@litbang.pertanian.go.id
Website: http://balittas.litbang.pertanian.go.id


View My Stats