Strategi Pengelolaan Serangga Hama dan Penyakit Tebu dalam Menghadapi Perubahan Iklim

Nurindah Nurindah, Titiek Yulianti

Abstract


Fenomena perubahan iklim terjadi karena aktivitas manusia dalam mengelola lingkungan, diantaranya adalah deforestasi, emisi gas dari kegiatan industri, dan pembakaran biomassa.  Komponen iklim yang berubah, yaitu peningkatan suhu udara, konsenrasi CO2 dalam atmosfer, dan hujan berpengaruh terhadap tanaman tebu, serangga serta mikro organisme yang berasosiasi dengan tanaman tebu.  Perubahan iklim lebih banyak menyebabkan pengaruh negatif terhadap tanaman tebu dan interaksi trofik antara tanaman tebu, serangga herbivora dan mikro organisme penyebab penyakit tanaman dan musuh alami herbivora maupun antagonis mikro organisme.  Peningkatan suhu udara menyebabkan perubahan fisiologis pada tanaman tebu yang berakibat meningkatnya infestasi serangga herbivora dan infeksi patogen penyebab penyakit tanaman.  Peningkatan komposisi CO2 dalam atmosfer menurunkan sistem ketahanan tanaman terhadap herbivora, sehingga dapat memicu terjadinya out break; dan dapat berpengaruh positif, negaif, maupun tidak berpengaruh terhadap perkembangan penyekit.  Perubahan iklim mengharuskan sistem pengelolaan hama dan penyaki tanaman tebu  untuk menerapkan aksi mitigasi maupun adaptasi perubahan iklim untuk memperoleh produksi tebu yang optimal dan sistem budidaya tebu yang berkelanjutan.  Dalam tinjauan ini dibahas pengaruh perubahan iklim terhadap perkembangan serangga hama dan patogen penyebab penyakit pada tanaman tebu, serta strategi pengelolaannya.

 

Climate change phenomenon occurs due to human activities in managing the environment, such as deforestation, gas emissions from industrial activities, and biomass burning. The changing of climate components, ie, rising air temperatures, CO2 concentration in atmosphere, and precipitation have an effect on sugarcane, as well as on insects and micro-organisms associated with sugarcane. Climate change causes negative effects on sugar cane and trophic interactions between sugarcane crops, herbivorous insects and plant-causing micro-organisms and natural enemies of herbivores as well as micro-organism antagonists. Increased temperatures lead to physiological changes in sugarcane resulting in increased insect infestation of herbivores and pathogenic infections o the plant. Increased CO2 composition in atmosphere decreases the plant resistance system to herbivores, thus triggering an outbreak; and may have a positive, negative, or no effect on the development of the diseases. Climate change requires pest and sugarcane pest control systems to implement climate change mitigation and adaptation actions to obtain optimal cane production and sustainable sugarcane cultivation systems. In this review, we discussed the effects of climate change on the development of insect pests and pathogen causes of disease in sugarcane crops, and the strategy to manage them.


Keywords


penggerek tebu; luka api; tebu; perubahan iklim

Full Text:

PDF (Indonesian)

References


Bade, B., Ghorpade, S., 2009. Life fecundity tables of sugarcane woolly aphid, Ceratovacuna lanigera Zehntner. Journal of insect science (Online) 22, 402–405.

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change on Biology 8, 1–16.

Ball, A., 1997. Microbial decomposition at elevated CO2 levels: effect of litter quality. Global Change Biology 3, 379–386.

Belskaya, E.A., Vorobeichik, E.L., 2013. Responses of leaf-eating insects feeding on aspen to emissions from the Middle Ural copper smelter. Russian Journal of Ecology 44, 108–117.

Bhuiyan, S.A., Croft, B.J., James, R.S., Cox, M.C., 2012. Laboratory and field evaluation of fungicides for the management of sugarcane smut caused by Sporisorium scitamineum in seedcane. Australasian Plant Pathology 41, 591–599.

Bonnett, G.D., 2014. Developmental Stages (Phenology). In: Moor, P.H., Botha, F.C. (Eds.), Sugarcane Physiology, Biochemistry & Functional Biology. John Wiley & Sons, Inc., Iowa, USA. Boonpradub, pp. 35–53.

Boullis, A., Francis, F., Verheggen, F., 2015. Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies? Environmental Entomology 44, 277–286.

Burdon, J., 1987. Diseases and Population Biology, 1st ed. Cambridge Univ. Press, New York.

Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104, 18866–70.

Chakraborty, S., Datta, S., 2003. How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist 159, doi:10.1046/j.1469-8137.2003.00842.x.

Chakraborty, S., Newton, A.C., 2011. Climate change, plant diseases and food security: an overview. Plant Pathology 60, 2–14.

Chakrabortya, S.., Tiedemann, V., Teng, S., 2000. Environmental Pollution Keynote review Climate change: potential impact on plant diseases. Environmental Pollution 108, 317–326.

Chandiposha, M., 2013. Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. African Journal of Agricultural Research 8, 2814–2818.

Coakley, S.M., Scherm, H., Chakraborty, S., 1999. Climate Change and Plant Disease Management. Annual Review of Phytopathology 37, 399–426.

Damayanti, T.A., Putra, L.K., 2011. First occurrence of sugarcane streak mosaic virus infecting sugarcane in Indonesia. Journal of General Plant Pathology 77, 72–74.

Damayanti, T.A., Putra, L.K., Giyanto, 2010. Hot Water Treatment of Cutting-Cane Infected With Sugarcane Streak Mosaic Virus ( Scsmv ). Journal of International Society for Southeast Asian Agricultural Sciences (JISSAAS) 16, 17–25.

Dhaliwal, G., Jindal, V., Dhawan, A., 2010. Insect pest problems and crop losses: Changing trends. Indian Journal of Ecology 37, 1–7.

Dhillon, M., Sharma, H., 2009. Temperature influences the performance and effectiveness of field and laboratory strains of the ichneumonid parasitoid, Campoletis chlorideae. Biocontrol 54, 743–750.

Evans, N., Baierl, A., Semenov, M.A., Gladders, P., Fitt, B.D.., 2008. Range and severity of a plant disease increased by global warming. Journal of The Royal Society Interface 5, 525–531.

Francl, L.J., 2001. The Disease Triangle: A plant pathological paradigm revisited. The Plant Health Instructor.

Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., Travers, S.E., 2006. Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology 44, 489–509.

Ghini, R., Hamada, E., Bettiol, W., 2008. Climate change and plant diseases. Scientia Agricola 65, 98–107.

Gillaspie, A., Teakle, D., 1989. Ratoon stunting disease. In: Ricaud, C., Egan, B.. T., Gillaspie, A.G., Hughes, C.. G. (Eds.), Diseases of Sugarcane Major Diseases. Elsevier, Amsterdam, pp. 59–80.

Hannah, L., Lovejoy, T.E., Schneider, S.H., 2005. Biodiversity and climate change in context. In: Lovejoy, T.E., Hannah, L. (Eds.), Climate Change and Biodiversity. New Haven, Yale, pp. 3–14.

Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., Sakulyanontvittaya, T., 2007. Sesquiterpene Emissions from Pine Trees − Identifications, Emission Rates and Flux Estimates for the Contiguous United States. Enviromental Science Technology 41, 1545–1553.

Hibberd, J.M., Whitbread, R., Farrar, J.F., 1996. Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiological and Molecular Plant Pathology 48, 37–53.

Huang, F., Leonard, R., Moore, S., Yue, B., Parker, R., Reagan, T., Stout, M., Cook, D., Akbar, W., Chilcutt, C., White, W., Lee, D., Biles, S., 2008. Geographical susceptibility of Louisiana and Texas populations of the sugarcane borer , Diatraea saccharalis ( F .) ( Lepidoptera : Crambidae ) to Bacillus thuringiensis Cry1Ab protein. Crop Protection 27, 799–806.

IPCC, 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri RK., Meyer LA (Eds). Geneva, Switzerland.

Joshi, S., Viraktamath, C.A., 2003. The sugarcane woolly aphid, Ceratovacuna lalligera Zehntner (Hemiptera: Aphididae): its biology, pest status and control. Current Science 87, 307–316.

Koike, H., Gillaspie, A.G.J., 1989. Mosaic. In: Ricaud, C., Egan, B.T., Gillaspie, J.A.G., Hughes, C.. (Eds.), Diseases of Sugarcane: Major Diseases. Elsevier Science, Amsterdam, pp. 301–322.

Las, I., Pramudia, A., Runtunuwu, E., Setyanto, P., 2011. Antisipasi Perubahan Iklim Dalam Mengamankan Produksi Beras Nasional. Pengembangan Inovasi Pertanian 4, 76–86.

Linnenluecke, M.K., Nucifora, N., Thompson, N., 2018. Implications of climate change for the sugarcane industry. Wiley Interdisciplinary Reviews: Climate Change 9, 1–34.

Magarey, R., Royal, A., Williams, D., Bull, J., 2011. A brief history of disease epidemics in Queensland and of some economic outcomes [WWW Document]. URL http://www.assct.com.au/media/pdfs/Ag 26 Magarey et al.pdf (accessed 3.16.15).

Matsuoka, M., Furbank, R.T., Fukayama, H., Miyao, M., 2001. Molecular Engineering Of C4 Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 52, 297–314.

McDonald, B.A., Linde, C., 2002. Pathogen Population Genetics, Evolutionary Potential, And Durable Resistance. Annual Review of Phytopathology 40, 349–379.

Melloy, P., Hollaway, G., Luck, J., Norton, R., Aittken, E., Chakraborty, S., 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology 16, 3363–3373.

Nibouche, S., Tibère, R., Costet, L., 2012. The use of Erianthus arundinaceus as a trap crop for the stem borer Chilo sacchariphagus reduces yield losses in sugarcane : Preliminary results. Crop Protection 42, 10–15.

Niziolek, O., Berenbaum, M., DeLucia, E., 2012. Impact of elevated CO2 and temperature on Japanese beetle herbivory. Insect Science 20, 513–23.

Nurindah, N., Sunarto, D.A., Sujak, S., 2016. Evaluasi pelepasan Trichogramma spp. untuk pengendalian penggerek pucuk dan batang tebu. Jurnal Entomologi Indonesia 13, 107–116.

Pare, P.W., Tumlinson, J.H., 1999. Update on plant-insect interactions plant volatiles as a defense against insect herbivores. Plant Physiology 121, 325–331.

Park, S., Creighton, C., Howden, M., Matthieson, L., 2008. Climate change and the Australian Sugarcane Industry : Impacts, adaptation and R&D opportunities. Sugar Research Australia Ltd, Brisbane.

Pathma, J., Sakthivel, N., 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1, 1–19.

Prasad, Y.G., Bambawale, O.M., 2010. Effects of Climate Change on Natural Control of Insect Pests. Res. & Dev 25, 1–12.

Rizwan Rasheed, Wahid, A., Farooq, M., Hussain, I., Basra, S.M.A., 2011. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulation 65, 35–45.

Rott, P.C., Girard, J.-C., Comstock, J.C., 2013. Impact of pathogen genetics on breeding for resistance to sugarcane diseases. International Society of Sugar Cane Technologists 28, 1–11.

Runion, G.B.., Curl, E.A.., Rogers, H.H.., Backman, P.A.., Rodriguez-Kabana, R., Helms, B.., 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agricultural and Forest Meteorology 70, 117–130.

Salaudeen, M., Adama, C., Abdullahi, A., Ayeleke, D., Ibrahim, A., 2016. Climate change and viral diseases in relation to crop productivity and food security: A REVIEW. International Journal of Applied Biological Research 7, 56–65.

Santoso, A.B., 2016. Pengaruh Perubahan Iklim terhadap Produksi Tanaman Pangan di Provinsi Maluku. Penelitian Pertanian Tanaman Pangan 35, 29–38.

Sharma, B.L., Singh, S.P., Sharma, M.L., 2012. Bio-degradation of Crop Residues by Trichoderma Species vis-à vis Nutrient Quality of the Prepared Compost. Sugar Tech 14, 174–180.

Sharma, H.C., 2014. Climate Change Effects on Insects: Implications for Crop Protection and Food Security. Journal Journal of Crop Improvement 28, 229–2259.

Sharma, H.C., 2016. Climate change vis-a-vis pest management:Conference on National Priorities in Plant Health Management February 4-5,2016, Tirupati. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telengana, India 17–25.

Srikanth, J., Mukunthan, N., Singaravelu, B., Kurup, N.K., Santhalakshmi, G., 2009. Rearing dipha aphidivora, the pyralid predator of sugarcane woolly aphid Ceratovacuna lanigera, on its frozen host may be unfeasible. Sugar Tech 11, 80–82.

Srivastava, A.K., 2012. Sugarcane production: Impact of climate change and its mitigation. Biodiversitas, Journal of Biological Diversity 13, 214–227.

Stavrinides, M.C., Lara, J.R., Mills, N.J., 2010. Comparative influence of temperature on development and biological control of two common vineyard pests (Acari: Tetranychidae). Biological Control 55, 126–131.

Stefan Rahmstorf, Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., Somerville, R.C.J., 2007. Recent Climate Observations Compared to Projections. Science 316, 709.

Strange, R.N., Scott, P.R., 2005. Plant Disease: A Threat to Global Food Security. Annual Review of Phytopathology 43, 83–116.

Sukumar Chakraborty, S., 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3.

Takabayashi, J., Dicke, M., Posthumus, M.A., 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. Journal of Chemical Ecology 20, 1329–1354.

Tay, W., Soria, M., Walsh, T., Thomazoni, D., Silvie, P., 2013. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 8 8.

Thomson, L.J., Macfadyen, S., Hoffmann, A. a., 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52, 296–306.

Torriani, D., Calanca, P., Lips, M., Ammann, H.B., Jürg, M., 2007. Regional assessment of climate change impacts on maize productivity and associated production risk in Switzerland. Regional Environmental Change 7, 209–221.

Tripathi, A., Tripathi, D.K., Chauhan, D.K., Kumar, N., Singh, G.S., 2016. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agriculture, Ecosystems and Environment 216, 356–373.

Vara Prasad, P. V., Vu, J.C. V., Boote, K.J.., Allen, L.H.J., 2009. Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Functional Plant Biology 36, 761–769.

Veromann, E., Toome, M., Kännaste, A., Kaasik, R., Copolovici, L., Flink, J., Kovács, G., Narits, L., Luik, A., Niinemets, Ü., 2013. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection 43, 79–88.

Vu, J., Allen, L.J., Gallo-Meagher, M., 2002. Crop plant responses to rising CO2 and climate change. In: Pessarakli, M. (Ed.), ‘Handbook of Plant and Crop Physiology. Marcel Dekker, New York, pp. 35–55.

Wand, S.J., Midgley, G.F., Jones, M.H., Curtis, P.S., 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions. Global Change Biology 5, 723–741.

War, A.R., Taggar, G.K., War, M.Y., Hussain, B., 2016. Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. International Journal of Clinical and Biological Sciences 1, 16–29.

Wismer, C., Bailey, R., 1989. Pineapple disease. In: Ricaud, C., Egan, B.T., Gillaspie, A.G., Hughes, C.G. (Eds.), Diseases of Sugarcane -Major Diseases. Elsevier, Amsterdam, p. 145–1 56.

Yuan, J.S., Himanen, S.J., Holopainen, J.K., Chen, F., Stewart, C.N., 2009. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends in Ecology and Evolution 24, 323–331.

Ziska, L.H., Sicher, R.C., Bunce, J.A., 1999. The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiologia Plantarum 105, 74–80.

Zvereva, E., Kozlov, M., 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change on Biology 12, 27–41.




DOI: http://dx.doi.org/10.21082/btsm.v10n1.2018.%25p

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

          


Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121
Email: balittas@litbang.pertanian.go.id
Website: http://balittas.litbang.pertanian.go.id


View My Stats