Karakteristik Kimia Serat Buah, Serat Batang, dan Serat Daun

Elda Nurnasari, Nurindah Nurindah

Abstract


Serat alam yang berasal dari tanaman non-kayu dikategorikan menjadi tiga kelompok yaitu serat buah, serat batang dan serat daun.  Masing-masing jenis serat alam tersebut memiliki karakteristik yang berbeda.  Karakter kimia, fisik, maupun dinamik dari serat alam diperlukan untuk pengembangan pemanfaatannya sebagai bahan baku industri strategis berbasis serat.  Penelitian ini dilakukan untuk menganalisis karakteristik kimia serat buah (kapas), serat batang (abaka), dan serat daun (sisal), serta membahas peluang pemanfaatannya dalam industri berbasis serat alam. Informasi mengenai karakteristik kimia serat diperlukan sebagai dasar untuk pemanfaatan serat sebagai bahan baku dalam industri strategis. Data karakteristik kimia serat alam juga diperlukan sebagai dasar pembuatan produk-produk turunannya (diversifikasi produk) sehingga dapat menjadi nilai tambah bagi produk tanaman serat. Analisis karakter kimia serat alam dilakukan dengan menggunakan metode Standar Nasional Indonesia (SNI) untuk mendapatkan informasi tentang kandungan selulosa, hemiselulosa, holoselulosa, lignin, dan pentosan, serta kadar zat ekstraktif. Hasil penelitian menunjukkan bahwa serat buah kapas memiliki kandungan selulosa tertinggi (98,06%), serat batang abaka mempunyai kandungan lignin tertinggi (7,63%), sedangkan serat daun sisal mempunyai kandungan hemiselulosa tertinggi (21,97%).  Kadar holoselulosa ketiga jenis serat hampir sama, yaitu antara 93,3–94,7%. Kadar zat ekstraktif (kelarutan alkohol-benzena, air panas dan air dingin) ketiga jenis serat termasuk kecil (<5%) yaitu antara 0,63–4,44%. Informasi tentang karakter kimia serat alam tersebut hendaknya dipadukan dengan informasi karakter fisik dan dinamik serat untuk dikembangkan sebagai bahan baku industri strategis berbasis serat, misalnya kertas uang, biokomposit untuk industri automotif, biopolymer dan produk yang berbasis nano fiber.


Chemical Characteristics of Boll, Bast, and Leaf Fibers


Non-wood natural fibers are categorized into three groups, viz. boll fiber, bast fiber and leaf fiber.  Those natural fibers have specific characters.  Chemical characters as well as physical and dynamical characters of the fibers are useful for their utilization in natural fiber based industries.  This research aims are to analyse chemical characters of cotton boll fibers, bast fiber of abaca, and leaf fiber of sisal, as well as to discuss the possibility of their use in fiber based industries.   The information of the fibers chemical characters is needed for developing their use as the main materials of strategic industries.  The data are also useful for developing derivates products or product diversification, so that could be an added value of the natural fibers.  The characterization of those fibers used Indonesian National Standard (SNI) methods to analyse the content of cellulose, hemi cellulose, holocellulose, lignin, and pentosan, as well as the extractive compounds.  Result showed that cotton fiber has the highest cellulose content (98.06%), the bast fiber of abaca has the highest lignin content (7.63%), and sisal has the highest hemicellulose content (21.9%).  Holocellulose content of those fibers were around 93.3-94.7%.  The content of extractive compound of the fibers (in term of disolve capacity of fiber in alcohol-benzene, hot and cold water) was catogerized as very low (less than 5%).  These information regarding to the chemical characters of those three fibers when are integrated with the fiber-physical and dynamical characters would be useful for developing the utilization of the fibers into natural-fiber-based industries, such as paper money, biocomposite for automotive industry, biopolymers, and nano fiber products.


Keywords


Serat alam, karakteristik kimia, kapas, abaka, sisal, natural fibers, chemical characteristics, cotton, abaca, sisal

Full Text:

PDF (Indonesian)

References


Abey, SD 2016, Difference between cellulose and hemicellulose, Posted on December 26, 2016 (http://www.differencebetween.com/difference-between-cellulose-and-vs-hemicellulose/ (diakses pada 15 Oktober 2017).

Badan Standarisasi Nasional 1989a, Cara uji kadar pentosan pulp kayu, in SNI 14-1304-1989. Jakarta: Badan Standarisasi Nasional. Badan Standarisasi Nasional 1989b, Cara uji kadar sari (Ekstrak Alkohol-Benzena) dalam kayu dan pulp, in SNI 14-1032-1989, Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional 1989c, Cara uji kelarutan dalam air dingin dan air panas, in SNI 01-1305-1989. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional 1990, Cara uji kelarutan kayu dan pulp dalam natrium hidroksida 1 %, in SNI 04-1838-1990, Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional 2008, Pulp dan kayu cara uji kadar lignin-metode klason, in SNI 0492-2008, Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional 2010, Cara uji kadar abu tidak larut asam, in SNI ISO 776:2010. Jakarta: Badan Standarisasi Nasional.

Badrinath, R & T Senthilvelan 2014, Comparative Investigation on Mechanical Properties of Banana and Sisal Reinforced Polymer Based Composites, Procedia Materials Science 5: 2263–72.

Balls, W 1965, The Development and Properties of Rare Cotton, London: Black Publ. Casey, JP 1980, Pulp and Paper Chemistry and Chemical Technology Third Edition, New York, Willey Interscience Publisher Inc.

Chen, H 2014, Chemical composition and structure of natural lignocellulose, Biotechnology of Lignocellulose: Theory and Practice, Springer Link, p:25-71.

Dahal, KR, Utomo, BI & Brink, M 2003, Agave Sisalana Perrine, in Plant Resources of South-East Asia Fibre Plants, edited by M Brink & RP Escobin, 17th ed. Leiden: Backhuys Publishers.

Fatriasari, W & Hermiati, E 2008, Analisis morfologi serat dan sifat fisis-kimia pada enam jenis bambu sebagai bahan baku pulp dan kertas, Jurnal Ilmu dan Teknologi Hasil Hutan 1(2):67–72.

Haygreen, JG & Bowyer, JL 1989, Forest products and wood science, Iowa State Univ. Press, 500p.

Hulle, A, Kadole, P & Katkar, P 2015, Agave Americana leaf fibers, Fibers 3(1):64–75, doi:10.3390/fib3010064.

Jayamani, E, Hamdan, S, Rahman, MR & Khusairy Muhammad, K 2014, Comparative study of dielectric properties of hybrid natural fiber composites, Procedia Engineering 97, Elsevier BV: 536–44, doi:10.1016/j.proeng.2014.12. 280.

John, MJ & Thomas, S 2008, Biofibres and Biocomposites, Carbohydrate Polymers 71 (3): 343–64. doi:10.1016/j.carbpol.2007.05.040.

Joseph, K., Romilalo, D, Toledo, F, James-Berira, Sabu, T & Carraldo, LH De 1999, A Review on Sisal Fibre Reinforced Polymeric Composites. Revista Brasilein de Eigentma Agricolo E Ambiental.

Krakhmalev, V & Paiziev, A 2004, Morphological Defects in Cotton Hairs and the Nature of Their Origin, Journal of Plant Physiology 161(7): 873–78. doi:10.1016/j.jplph.2004.03.001.

Leão, DAS, Conceição, MM, Conrado, S Morais, CRS, Souza, AG, Lima, CSS. Silva-Neto, JM & Silva. FLH 2016, Production of Energy—The Second Generation Ethanol and Prospects, in Drying and Energy Technologies. Advanced Structured Materials, edited by J. Delgado and Barbosa de Lima A, 63rded. Springer, Cham.

Lewin, M 2006, Cotton Fiber Chemistry and Technology, New York: CRC Press, Taylor and Francis Group.

Malkapuram, R, Kumar, V & Negi, YS 2009, Recent Development in Natural Fiber Reinforced Polypropylene Composites, Journal of Rein-forced Plastics and Composites, 28(10):1169–1189.

Morais, João Paulo Saraiva, Morsyleide De Freitas Rosa, Men De Sá Moreira De Souza Filho, Lidyane Dias Nascimento, Diego Magalhães Do Nascimento, and Ana Ribeiro Cassales 2013, Extraction and Characterization of Nano-cellulose Structures from Raw Cotton Linter. Carbohydrate Polymers 91(1):229–35, doi:10.1016/j.carbpol.2012.08.010.

Mukherjee, PS & Satyanarayana, KG 1986, Structure and Properties of Some Vegetable Fibres, Journal Mater. Science, 21(1):51–56.

Ott, E, Spurlin, H & Graffin M, 1954, Cellulose and Cellulose Derivatives, New York: Intersci. Pub.

Pickering, KL, Efendy, MGA, & Le, TM, 2016, A review of recent developments in natural fibre composites and their mechanical performance, Composites: Part A 83:98–112.

Rajesh, M, & Pitchaimani, J, 2016, Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite. J. Rein. Plas. Comp 35:228–42.

Ramadevi, P, Sampathkumar, D, Bennehalli, B & Srinivasa, CV, 2013, Influence of esterification on the water absorption property of single abaca fiber, Chemical Science Transactions 2 (2):413–22.

Richter, S, Stromann, K & Müssig, J 2013, Abacá (Musa textilis) grades and their properties-a study of reproducible fibre characterization and a critical evaluation of existing grading systems, Industrial Crops and Products 42(1): 601–12.

Rowell, SM, James, SH & Bisen, SS, 1997, Changes of fiber properties during the growing season. in Paper Composites from Agro-Based Resouces, edited by RM Rowell, RA Young & JK Rowell, p. 23–36, New York, Lewis Publishers.

Saheb, DN & Jog, JP 1999, Natural fiber polymer composites: A Review, Adv. Polym. Technol. 18:351–363.

Satyanarayana, KG, Sukumaran, K, Mukherjee, PS, Pavithran, C & Pilla, SGK 1990, Natural fibre-polymer composites, Cement and Concrete Composites 12 (2):117–36.

Sczostak, A 2009, Cotton linters: An alternative cellulosic raw material, Macromolecular Symposia, 280:45–53.

Sjostrom, E 1993, Wood Chemistry: Fundamentals and Applications, California: Academic Press.

Srinivasakumar, P, Nandan, MJ, Kiran, CU & Rao, KP 2013, Sisal and its potential for creating innovative employment opportunities and economic prospects, IOSR Journal of Mechanical and Civil Engineering 8(6):1–8, diakses pada 16 Oktober 2017 (www.iosrjournals.org).

Sudjindro 2011, Prospek serat alam untuk bahan baku kertas uang, Perspektif, 10(2):92–104.

Susheel, K, Kaith, BS & Inderjeet, K 2009, Pretreatments of natural fibers and their application as reinforcing material in polymer composites, A Review, P. Engg. Sci., 49:1253–72.

Taj, S, Munawar, MA & Khan, S, 2007, Natural fiber-reinforced polymer composites, in Proc. Pakistan Acad. Sci., 44(2): 129-144.

TAPPI 2001, TAPPI Test Methods, Pentosans in wood and pulp, Atlanta: Technical Association of the Pulp and Paper Industry.

Teixeira, EM., Corrêa, AC, Manzoli, A, Leite, FL, Oliveira, CR & Mattoso, LHC 2010, Cellulose nanofibers from white and naturally colored cotton fibers, Cellulose 17:595–606.

Timpa, JD & Triplett, BA 1993, Analysis of cell-wall polymers during cotton fiber development, Planta, 189:101–8.

Vijayalakshmi, K, Neeraja ChYK, Kavitha, A & Hayavadana, J 2014, Abaca Fibre, Transactions on Engineering and Sciences, 2(9):16–19.

Wardany, HP 2002, Analisis Sifat kimia dan sifat anatomi kayu mangium (Acacia mangium Willd.) dari berbagai provenansi, Bogor: Fakultas Kehutanan-Institut Pertanian Bogor.




DOI: http://dx.doi.org/10.21082/btsm.v9n2.2017.%25p

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

          


Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121
Email: balittas@litbang.pertanian.go.id
Website: http://balittas.litbang.pertanian.go.id


View My Stats