Uji Ketahanan Klon-klon Harapan Tebu terhadap Kekeringan

Prima Diarini Riajaya, Djumali Djumali, Bambang Heliyanto

Abstract


Pengembangan tebu di lahan kering harus didukung oleh ketersediaan varietas tebu tahan kering dan mempunyai rendemen yang tinggi. Penelitian rumah kaca bertujuan untuk mengetahui tingkat ketahanan klon-klon harapan tebu terhadap cekaman kekeringan.  Sebanyak 13 klon-klon harapan tebu masak awal sampai awal tengah dan satu varietas pembanding ditanam di dalam pot mulai Juni sampai Desember 2018 menggunakan benih budchip.  Rancangan perlakuan menggunakan Rancangan Petak Terbagi dengan tiga ulangan, petak utama terdiri dari tiga perlakuan kekeringan yaitu (A) kadar air tanah tersedia (KAT) dipertahankan suboptimal 40% (kisaran 38-43%) dan (B) KAT dipertahankan 70% (68-73%) dan (C) KAT dipertahankan optimal 100% (95-100%) saat tanaman berumur setelah satu bulan sampai empat bulan setelah tanam (fase pembentukan anakan).  Anak petak teridiri dari 14 klon/varietas pembanding (PS 881).  Hasil penelitian menunjukkan tingkat ketahanan klon-klon unggul tebu terhadap kekeringan bervariasi dari sangat rentan sampai sangat toleran, yaitu sembilan klon ungggul dengan ketahanan kekeringan yang lebih baik dibanding varietas pembanding (rentan) yaitu MLG 26, MLG 12, MLG 55, dan MLG 11 (moderat), MLG 24 (toleran), MLG 9, MLG 14, MLG 4,  dan MLG 49 (sangat toleran).  Terdapat tiga klon unggul dengan ketahanan yang sama dengan varietas pembanding yaitu MLG 38, MLG 5, dan MLG 52 (rentan), serta satu klon dengan ketahanan tidak lebih baik dibanding varietas pembanding yaitu MLG 56 (sangat rentan).

 

           Drought Resistance Test of Sugarcane Promising Clones

ABSTRACT

 

            The development of sugarcane in dry land must be supported by the availability of sugarcane dry-resistant varieties and high yield. A greenhouse research was done to determine the level of resistance of sugarcane clones to drought stress using bud chips planted in plastic pots from June to December 2018. The experiment was arranged in a Split Plot Design with three replicates. The main plots consisted of three moisture availability to provide the available soil water (ASW) content maintained at 40% (range 38-43%), 70% (68- 73%) and 100% (95-100%) at the age 1-4 months after planting. Sub plots consisted of 13 clones and one check variety (PS 881). The results showed the level of drought resistance of sugarcane clones varied from very vulnerable to very tolerant,  nine clones with better drought resistance compared to check variety (susceptible) namely MLG 26, MLG 12, MLG 55, and MLG 11 (moderate), MLG 24 (tolerant), MLG 9, MLG 14, MLG 4, and MLG 49 (very tolerant). There are three clones with the same level of drought resistance with check variety namely MLG 38, MLG 5, and MLG 52 (susceptible), and one clone namely MLG 56 is very susceptible.


Keywords


tebu; ketahanan terhadap kekeringan; klon-klon harapan tebu

Full Text:

PDF (Indonesian)

References


Carasoli, D, Junior, JA & Evangelista, AWP 2019, Quantitative and qualitative analysis of sugarcane productivity in function of air temperature and water stress. Comunicata Scientiae 10(1):203-212. DOI:10.14295/CS.v10i1.2574. ww.comunicatasscientiae.com

Carvalho, AL, Menezes, RSC, Nobrega, RS, Pinto, A de S, Ometto, JPHB, Randow, C von & Glarolla, A, 2015 Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil, Renewable Energy Vol.78:26-34.

Cha-um, S, Wangmoon, S, Mongkolsiriwatana, C, Ashraf, M & Kordmanee, C 2012, Evaluating sugarcane (Saccharum sp.) cultivars for water deficit tolerance using some key physiological markers, Plant Biotechnology 29:431-439.

Dapanage, M & Bhat, S 2018, Physiological responses of commercial sugarcane (Saccharum spp.hybrids) varieties to moisture deficit stress tolerance, Ind J. Plant Physiol. (January-March 2018) 23(1): 40-47.

Dinh, TH, Watanabe, K, Takaragawa, H, Nakabaru, M & Kawamitsu, Y 2017, Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen aplication levels, Plant Production Science Vol. 20(4):412-422.

Devi, K, Gomathi, R, Kumar, A, Manimekalai, R & Selvi, A 2018, Field tolerance and recoverypotential of sugarcane varietiessubjected to drought, Ind J. Plant Physiol. (April-June, 2018)23(2):271-282.

Djumali, AD Khuluq, &Lestari 2017,Evaluasi kemasakan klon-klon unggul tebu rendemen tinggi hasil persilangan. Laporan Hasil Penelitian TA. 2016. Balai Penelitian Tanaman Pemanis dan Serat.

Endres, L, Silva, JV, Ferreira, VM & Barbosa GV de S 2010, Photosynthesis and water relations in Brazilian sugarcane, The Open Agriculture Journal 4: 31-37.

Ferreira, THS, Tsunada, Max S, Bassi, D, Arauji, P, Mattiello, L, Guidelli, GV, Righetto, GL, Goncalves, VR 2017. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions, Frontiers in Plant Science Vo. 8 June 2017. www.frontiersin.org. doi 10.3389/fpls.2017.01077.

Hatfield, JL, Boote, KJ, Kimball, BA, Ziska, LH, Izairralde, RC, Ort, D, Thomsin, AM & Wolfe, D 2011, Climate impacts on agriculture: implications for crop production, Agronomy Journal Vol.103(1):351-370

Heliyanto, B., Marjani, &A. Rahman. 2017. Uji multilokasi klon-klon unggul tebu rendemen tinggi hasil persilangan. Laporan Hasil Penelitian TA. 2016. Balai Penelitian Tanaman Pemanis dan Serat.

Inman-Bamber, NG, Lakshmanan, P, & Park, S 2012, Sugarcane for water-limited environments: Theoritical assessment of suitable traits, Field Crops Research Vol.134:95-104.

Jaiphong, T, Tominaga, J, Wanatabe, K, Nakabaru, M, Takaegawa, H, Suwa, R, Ueno, M,& Kawamitsu, Y 2016, Effects of duration and combination of drought and flood conditions of leaf photosynthesis, growth and sugar content, Plant Production Science Vol, 19(3):427-437.

Lestari & Djumali 2017, Toleransi klon unggul jarak pagar terhadap cekaman kelembapan tanah, Jurnal Ilmu Pertanian Indonesia (JIPI), Vol.22(2): 92-98.

Marin, FR, Ribeiro, RV & Marchiori, PER 2914, How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane, Theoritical and Experimental Plant Physiology Doi 10.1007/s40626-014-0006-2

Medeiros, DB, da Silva, EC, Nogueira, RJMC, Teixeira, MM & Buckeridge, MS 2013, Physiological limitations in two sugarcane varieties under water suppression and after recovering, Theoretical and Experimental Plant Physiology 25(3):213-222.

Murdiyatmo U, Nurmalasari,& Miwa, H 2012, Biotechnology of drought tolerant sugarcane: Expression of gene encoding choline dehydrogenase from E. Coli and R. mellioti in transgenic sugarcane. Makalah seminar Kongres IKAGI di Surabaya, 8-9 Februari 2012.

Neto, JR, de Souza, ZM, Kolln, OT, Carvalho, JLN, Ferreira, DA, Castioni, GAF, Barbosa, LC, de Castro, SGQ, Braunbeck, QA, Garside, AL, & Franco, HCJ 2018. The anrrangement and spacing of sugarcane planting influence root distributionand crop yield, BioEnergy 11:291-304.

Oliveira, RA, Ramos, MM & Aquino, LA 2015, Sugarcane: Chapter 8 Irrigation management, Agricultural Production, Bioenergy and Ethanol, p.161-183

Sanghera, G & Kumar A 2018, Recent perspectives towards enhancing drought tolerance in sugarcane, The Journal of Plant Science Research 34(1):23-35

Santos, LC, Coelho, RD, Barbosa, FS, Leal, DPV, Junior, EFF, Barros, THS, Lizcano, JV, and Robeiro, NL 2019, Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties, Agricultural Water Management Vol.221:322-333.

Silva, MA, Jifon, JL, da Silva, AG and Sharma, V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol., 19(3):193-201.

Singels, A, Jones, M, Marin, F, Ruane, A & Thornburn, P 2013, Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the Canegro model, Sugar Tech. doi 10.1007/s12355-013-0274-1

Singels, A, Paraskevopoulus, AL & Mashabela, ML 2019, Farm level decision support for sugarcane irrigation management during drought. Agricultural Water Management Vol. 222:274-285

Sugiyarta, E. 2007. Konsepsi penataan varietas dan pengembangan varietas tebu unggul. Program Pelatihan Petugas Litbang Pabrik Gula. P3GI.

Wiedenfeld, RP 2000, Water stress during different sugarcane growth periods on yield and response to N fertilization, Agricultural Water Management 43:173-182.

Zhao, D. and Li, Yang-Rui. 2015. Climate change and sugarcane production:Potential impact andmitigation strategies.International Journal of Agronomy. http://dx.doi.org/10.1155/2015/547386. 10 pp.

Zu, Q, Mi, C, Liu, de L, He, L, Kuang, Z, Fang, Q, Raamp, D, Li, L, Wang, B, Chen, Y, Li, J, Jin, N, & Yu, Q 2018, Spatio-temporal distribution of sugarcane potential yields and yield gap in Southern China, European Journal of Agronomy Vol.92:72-83.




DOI: http://dx.doi.org/10.21082/btsm.v12n1.2020.1-11

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

          


Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121
Email: balittas@litbang.pertanian.go.id
Website: http://balittas.litbang.pertanian.go.id


View My Stats