Pemanfaatan Lignin dari Biomassa Tanaman Serat Untuk Sumber Bioenergi

Farida Rahayu, Mala Murianingrum, Nurindah Nurindah



Biomassa lignosellulosa memiliki potensi sebagai material penghasil bahan kimia dan biomaterial.  Lignin adalah polimer alami yang ketersediaannya paling melimpah kedua setelah selulosa. Lignin merupakan biopolimer berbasis fenol dan memiliki kandungan karbon lebih tinggi daripada oksigen yaitu dengan ratio 2:1 sehingga kandungan energinya lebih besar daripada selulosa. Hal ini menjadikan lignin sebagai bahan baku untuk  memproduksi bahan bakar dan senyawa aromatik seperti fenol, benzene, toluene, xilen, karbon fiber, karbon aktif dan material komposit lainnya. Bahan-bahan tersebut digunakan secara berkelanjutan dalam suatu produksi, sebagai sumber energi, katalis dan untuk mengatasi polusi lingkungan atau kontaminasi. Tersedia berbagai sumber lignin, termasuk tanaman serat seperti agave, kenaf dan rami. Sifat fisik dan sifat kimia lignin akan berbeda antara satu dengan lainnya tergantung dari asal sumbernya dan metode ekstraksi yang digunakan. Keberhasilan dalam mencapai tujuan pemanfaatan lignin tergantung pada pengembangan teknologi untuk mengatasi tantangan-tantangan, seperti: 1) teknologi pretreatmen yang efisien dan teknologi ektraksi untuk pemisahan lignin dengan kemurnian tinggi; 2) analisis dan karakterisasi kuantitatif yang tepat untuk lignin dalam proses transformasi kimia; 3) pendekatan baru untuk konversi lignin menjadi produk berharga. Tinjauan ini merangkum inovasi mutakhir terbaru dari konversi lignin dengan fokus pada tiga aspek utama yang disebutkan di atas serta potensi tanaman serat sebagai sumber lignin yang terbarukan.



Utilization of Lignin from fiber crops biomass for bioenergy resources


Lignocellulosic biomass has the potential to produce chemicals and biomaterials. Lignin is a natural polymer whose availability is the second most abundant after cellulose. Lignin is a phenol-based biopolymer and has a higher carbon content than oxygen in a ratio of 2: 1, so that the energy content is greater than cellulose. This makes lignin as a raw material for producing fuels and aromatic compounds such as phenols, benzene, toluene, xylene, carbon fiber, activated carbon and other composite materials. These materials are used sustainably in a production, as a source of energy, as a catalyst and to overcome environmental pollution or contamination. Various sources of lignin are available, including fiber plants such as agave, kenaf and flax. The physical and chemical properties of lignin differ from one another depending on the origin of the source and the extraction method used. Success in achieving the goal to utilize lignin depends on developing technology to overcome the following challenges, such as: 1) efficient pretreatment technology and extraction technology for the separation of high-purity lignin; 2) appropriate quantitative analysis and characterization for lignin in the process of chemical transformation; 3) a new approach to the conversion of lignin into valuable products. This review summarizes the latest up-to-date innovations of lignin conversion with a focus on the three main aspects mentioned above and the potential of fiber crops as a source of renewable lignin


conversion; biomass; lignin; agave; kenaf; ramie

Full Text:

PDF (Indonesian)


Agarwal, B., Kailasa, K., Sangwan, R.S., Elumalai, S. 2018. Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review. Renew. Sustain. Energy Rev., 2018, 82, 2408–2425.

Angelini, L. G., and Tavarini, S. 2013. Ramie [Boehmeria nivea (L.) Gaud.] as a potential new fibre crop for the Mediterranean region: Growth, crop yield and fibre quality in a long-term field experiment in Central Italy. Industrial Crops and Products, 51, 138-144. doi: 10.1016/j.indcrop.2013.09.009

Abbott, T.P., Bagby, M.O., James, C., Peterson, R.E. 1986. A 14C balance on nitrobenzene oxidized kenaf lignin. J Wood Chem Technol 6:487–494

Borland, A. M., Griffiths, H., Hartwell, J., Smith, J. A. C. 2009. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. Journal of Experimental Botany, 60, 2879–2896

Benatti, J. R. 1988. Rami: planta textil e forrageira. São Paulo, SP: Nobel

Chen, Z. and Wan, C. 2017. Biological valorization strategies for converting lignin into fuels and chemicals. Renew. Sustain. Energy Rev., 2017, 73, 610-621.

Cherubini, F., Stromman, A. H. 2011. Principles of Biorefining. In Biofuels-Alternative Feedstocks and Conversion Processes; Pandey, A., Larroche, C., Ricke, S. C., Dussap, C.-G., Gnansounou, E., Eds.; Academic Press: Amsterdam., 2011, pp 3−23.

Contò, G., Carfì, F., & Pace, V. 2011. Chemical composition and nutritive value of ramie plant (Boehmeria nivea (L.) Gaud] and its by-products from the textile industry as feed for ruminants. Journal of Agricultural Science and Technology, 5(9), 641-646. doi: 10.17265/2161-6256/2011.09A.003.

Duan, S., Liu, Z., Feng, X., Zheng, K., Cheng, L., and Zheng, X. 2012. Diversity and characterization of ramie-degumming strains. Scientia Agricola, 69(2), 119-125. doi: 10.1590/S0103-90162012000200006

Davis, S. C., Dohleman, F. G., and Long, S. P. 2011. The global potential for Agave as a biofuel feedstock. GCB Bioenergy (2011) 3, 68-78.

Dashtban, M., Schraft, H., Syed, T. A., and Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol., 1, 36–50.

del Rio, J.C., Gutierrez, A., Martinez, A. T. 2004. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom., 18, 1181–1185.

Erofeev, Y. V., Afanas’eva, V. L., Glushkov, R. V. 1990. Synthetic routes to 3,4,5-trimethoxybenzaldehyde. Pharm. Chem. J. 1990, 24, 501–510.

Faruk, O., Bledzki, A. K., Fink, H. P., and Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, vol. 37, no. 11, pp. 1552–1596.

Gillet, S., Aguedo, M., Petitjean, L., Morais, A.R.C., da Costa Lopes, A.M., Lukasik, R.M., Anastas, P.T. 2017. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem., 19, 4200–4233.

Galkin, M.V., Smit, A.T., Subbotina, E., Artemenko, K.A., Bergquist, J., Huijgen, W.J.J., Samec, J.S.M., 2016a. Hydrogen-free catalytic fractionation of woody biomass. Chem. Sus. Chem., 9, 3280–3287.

Galkin, M.V. and Samec, J. S. 2016b. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chem. Sus. Chem., 9, 1544–1558.

Gutiérrez, A., Rencoret, J., Cadena, E. M., Rico, A., Barth, D., José, C. 2012. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour. Technol., 119, 114–122, doi:10.1016/j.biortech.2012.05.112

Garcia-Reyes, B. R., Rangel-Mendez, J. R. 2009. Contribution of agrowaste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J. of Chem. Technol. and Biotechnol., 84, 1533–1538.

Gutierrez, A., Rodriguez, I. M., del Rio, J.C. 2004. Chemical characterization of lignin and lipid fractions in kenaf bast fibers used for manufacturing high-quality papers. J. Agric. Food Chem., 52, 4764–4773

Goheen, D. W. 1966. Hydrogenation of Lignin by the Noguchi Process. In Lignin Structure and Reactions; Marton, J., Ed.; American Chemical Society: Washington, DC., 1966, Vol. 59, 205−225.

Hassan, S. S., Williams, G. A., Jaiswal, A. K. 2018. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol., 262, 310–318.

Heitner, C., Dimmel, D.R., Schmidt, J.A. (Eds.). 2010. Lignin and Lignans: Advances in Chemistry; CRC Press: London, UK; New York, NY, USA, 2010; p. 651.

Hazra, S. K., and Karmakar, P. G. 2008. Anatomical parameters of bast fibres for yield and quality improvement. In Karmakar, P. G., Hazra, S. K., Ramasubramanian, T., Mandal, R. K., Sinha, M. K., Sen, H. S (Eds.), Jute and allied fibre updates (p. 38-45). Kolkata, IN: Central Research Institute for Jute and Allied Fibres.

Huber, G.W., Iborra, S., Corma, A. 2006. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev.,106, 4044–4098.

Isikgor, F. H. and Becer, C. R. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chem., 6, 4497-4559

Iniguez-Covarrubias, G., Lange, S. E., Rowell, R. M. 2001. Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour. Technol., 77, 25–32.

Iii, W. H. M., Akin,D. E., Archibald, D. D., Dodd, R. B., and Raymer, P. L. 1999. Chemical and instrumental characterization of maturing kenaf core and bast. Industrial Crops and Products, 10, 21–34, doi:10.1016/S09266690(99)00002-3.

Jiang, B., Cao, T., Gu, F., Wu, W., Jin, Y. 2017. Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf. ACS Sus. Chem. Eng., 5, 342–349.

Jose, S., Rajna, S., and Ghosh, P. 2017. Ramie fibre processing and value addition. Asian Journal Textile, 7(1), 1-9. doi: 10.3923/ajt.2017.1.9

Kim, K. H., Dutta, T., Sun, J., Simmons, B., Singh, S. 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem., 20, 809–815.

Kumar, G., Sivagurunathan, P., Zhen, G. Y., Kobayashi, T., Kim, S. H., Xu, K. Q. 2017. Combined pretreatment of electrolysis and ultra-sonication towards enhancing solubilization and methane production from mixed microalgae biomass. Bioresour. Technol., 245, 196–200.

Kim, J. S., Lee, Y. Y., Kim, T. H. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol., 199, 42–48.

Kobayashi, H., Yamakoshi, Y., Hosaka, Y., Yabushita, M., Fukuoka, A. 2014. Production of sugar alcohols from real biomass by supported platinum catalyst. Catal. Today, 226, 204–209.

Kawai, S., Nakagawa, M., and Ohashi, H. 2002. Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb. Technol., 30, 482–489, doi: 10.1016/S0141-0229(01)00523-3

Lee, S., Kang, M., Bae, J. H., Sohn, J. H., and Sung, B.H. 2019. Bacterial Valorization of Lignin: Strain, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front. Bioeng. Biotechnol., 7, 209, doi:10.3389/fbioe.2019.00209

Limarta, S. O., Ha, J. M., Park, Y. K., Lee, H., Suh, D. J., Jae, J. 2018. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J. Ind. Eng. Chem., 57, 45-54.

Liu, W., Chen, W., Hou, Q., Wang, S., Liu, F. 2018. Effects of combined pretreatment of dilute acid pre-extraction and chemical-assisted mechanical refining on enzymatic hydrolysis of lignocellulosic biomass. RSC Adv., 8, 10207–10214.

Li, M., Pu, Y., Ragauskas, A.J., 2016. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front. Chem., 4, 45.

Liu, W. J., Jiang, H., Yu, H.Q. 2015. Thermochemical conversion of lignin to functional materials: a review and future directions. Green. Chem., 17, 4888–11907.

Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., Henry, R. J. 2015. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sus. Energy Rev., 49, 871–906.

Laskar, D. D., Yang, B., Wang, H. M., Lee, J. 2013. Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuel Bioprod. Biorefin., 7, 602–626.

Lam, T. B. T., Hori, K., Iiyama, K. 2003. Structural characteristics of cell walls of kenaf (Hibiscus cannabinus L.) and fixation of carbon dioxide. J. Wood Sci., 49, 255–261.

Mashkovsky, M.D. 2014. Medicinal Products; Novaya Volna: Moskow, Russia.

Marques, G., Rencoret, J., Gutiérrez, A., Alfonso, J. E. M., and Río, J. C. 2010. Evaluation of the chemical composition of different non-woody plant fibers used for pulp and paper manufacturing. Open Agriculture Journal, 4, 93-101. doi: 10.2174/1874331501004010093

MacRae, W. D., Towers, G. H. N. 1984. Biological activities of lignans. Phytochemistry 1984, 23, 1207–1220.

McLeod, M. P., Warren, R. L., Hsiao, W. W., Araki, N., Myhre, M., Fernandes, C. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. PNAS 2006, 103, 15582–7.

Nelson, K., Weinel, C., Paulsen, I., Dodson, R., Hilbert, H., Martins dos Santos, V. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4, 799–808.

Neto, C. P., Seca, A., Coimbra, M. A., Domingues, F., Evtuguin, D., Silvestre, A., Cavaleiro, J.A. S. 1996. Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Ind. Crop. Prod., 5, 189–196.

Nobel, P. S. 1994. Remarkable Agaves and Cacti. Oxford University Press, Oxford

Ohtani, Y., Mazumder, B. B., Sameshima, K. 2001. Influence of the chemical composition of kenaf bast and core on the alkaline pulping response. J. Wood Sci., 47, 30–35.

Pandey, M.P., and Kim, C.S. 2011. Lignin depolymerization and conversion: A Review of thermochemical methods. Chem. Eng. Technol. 2011, 34, 29–41.

Pepper, J. M., Casselman, B. W., Karapally, J. C. 1967. Lignin Oxidation: Preferential use of cupric oxide. Can. J. Chem., 45, 3009−3012.

Ray, D. P., Banerjee, P., Satya, P., Ghosh, R. K., and Biswas, P. K. 2017. Exploration of profitability in the cultivation of ramie (Boehmeria nivea L. Gaudich.) fibre for sustaining rural livelihood. IJAEB, 10(3), 277-281. doi: 10.5958/2230-732X.2017.00034.1

Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., Weckhuysen, B. M. 2016. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215.

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., Wyman C. E. 2014. Review: Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 344, 6185, 1246843

Rodrigues, P. C., Borges da Silva, E. A., Rodriguez, A. E. 2011. Insights into Oxidative Conversion of Lignin to High-Added-Value Phenolic Aldehydes. Ind. Eng. Chem. Res., 50, 741−748.

Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L. 2006. The path forward for biofuels and biomaterials. Science, 311, 484–489.

Ralph, J. 1996. An unusual lignin from kenaf. J. Nat. Prod., 59, 341–342

Saratale, R. G., Shin, H. S., Ghodake, G. S., Kumar, G., Oh, M. K., Saratale, G. D. 2018. Combined effect of inorganic salts with calcium peroxide pretreatment for kenaf core biomass and their utilization for 2,3-butanediol production. Bioresour. Technol., 258, 26–32.

Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S .F., Beckham, G., Sels, B., 2018. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev., 47, 852–908.

Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev., 118, 614–678.

Si, X., Lu, F., Chen, J., Lu, R., Huang, Q., Jiang, H., Taarning, E., Xu, J. 2017. A strategy for generating high-quality cellulose and lignin simultaneously from woody biomass. Green Chem., 19, 4849–4857.

Stark, N. M., Yelle, D. J., and Agarwal, U. P. 2017. Techniques for Characterizing Lignin. In Book: Lignin in Polymer Composites: Four, Publisher: Elsevier, 49-66. doi: 10.1016/B978-0-323-35565-0.00004-7

Szallasi, A., Blumberg, P.M. 2017.Mechanisms and terapeutic potentials of vanilloids (capsaicin-like molecules). Adv. Pharmacol. 1993, 24, 123–155. Int. J. Mol. Sci, 18, 2421 25 of 29

Salleh, Z., Hyie, K. M., Berhan, M. N., Taib, Y. M. D., Latip, E. N. A. and Kalam, A. 2014. Residual tensile stress of kenaf polyester and kenaf hybrid under post impact and open hole tensile. Procedia Technology, 15, 856–61, doi:10.1016/j. protcy.2014.09.060.

Sen, T., and Reddy, H. N. J. 2011. Various industrial applications of hemp, kenaf, flax and ramie natural fibres. International Journal of Innovation and Technology Management, 2(3), 192-198. doi: 10.7763/IJIMT. 2011.V2.130

Shahbazi, A., Zhang, B., 2010. Dilute and concentrated acid hydrolysis of lignocellulosic biomass. Bioalcohol Prod., 143–158.

Smith, A. M. 2008. Prospects for increasing starch and sucrose yields for bioethanol production. The Plant Journal, 54, 546–558

Somerville, C. 2007. Biofuels. Current Biology, 17, 115–119.

Stephanopoulos, G. 2007. Challenges in engineering microbes for biofuel production. Science, 5, 801-804.

Santiago, D. I., Rodriguez, D. G. N., Mogollan, G. 2002. Potential for pulp and paper of agave plant fibers. Revista Forestal Venezolana, 46, 19–27

Seca, A. M. L., Cavaleiro, J. A. S., Domingues, F., Silvestre, A., Evtuguin, D., Neto, C.P. 1998. Structural characterization of the bark and core lignin from kenaf (Hibiscus cannabinus). J. Agric. Food Chem., 46, 3100–3108

Thomas,V. A., Donohoe, B. S., Li, M., Pu, Y., Ragauskas, A. J., Kumar, R., Nguyen, T. Y., Cai, C. M., Wyman, C. E. 2017. Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol. Biofuels, 10, 252

Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., Ragauskas, A. J. 2014. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod. Biorefin., 8, 836–856.

Tarabanko, V. E., Koropatchinskaya, N. V., Kudryashev, A. V., Kuznetsov, B. N. 1995. Influence of lignin origin on the efficiency of the catalytic oxidation of lignin into vanillin and syringaldehyde. Russ. Chem. Bull., 44, 367−371.

Voitl, T., Rudolf von Rohr, P. 2008. Oxidation of Lignin Using Aqueous Polyoxometalates in the Presence of Alcohols. Chem. Sus. Chem., 1, 763−769.

Vieira, M. C., Heinze, T., Antonio-Cruz, R., Mendoza-Martinez, A. M. 2002. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and Agave fourcroydes. Cellulose, 9, 203– 212.

Villar, J. C., Caperos, A., Garcia-Ochoa, F. 2001. Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci. Technol., 35, 245−255.

Wang, H., Pu, Y., Ragauskas, A., Yang, B. 2019. From lignin to valuable products-strategies, challenges, and prospects. Bioresour. Technol., 271, 440-461.

Wang, H., Wang, H., Kuhn, E., Tucker, M. P., Yang, B. 2018. Production of jet fuel-range hydrocarbons from hydrodeoxygenation of lignin over super Lewis acid combined with metal catalysts. Chem. Sus. Chem., 11, 285–291.

Wan, X., Tian, D., Shen, F., Hu, J., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y. 2018. Fractionating wheat straw via phosphoric acid with hydrogen peroxide pretreatment and structural elucidation of the derived lignin. Energy Fuels, 32, 5218–5225.

Wang, H., Ruan, H., Feng, M., Qin, Y., Job, H., Luo, L., Wang, C., Engelhard, M.H., Kuhn, E., Chen, X. 2017. One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on Zeolite Y. Chem. Sus. Chem., 10, 1846–1856.

Werpy, T., Petersen, G. 2004. Top value-added chemicals from biomass. NATO Adv. Sci. Inst., 1, 263–275.

Yoo, C. G., Lee, C. W., Kim, T. H. 2014. Effect of low-moisture anhydrous ammonia (LMAA) pretreatment on biomass quality and enzymatic hydrolysis for long-term storage. Appl. Biochem. Biotechnol., 174, 2639–2651.

Yan, N., Zhao, C., Dyson, P. J., Wang, C., Liu, L.T., Kou, Y. 2008. Selective Degradation of Wood Lignin over Nobel-Metal Catalysts in a Two-Step Process. Chem. Sus. Chem., 1, 626−629.

Yu, H. Q., and C. W. Yu. 2007. Study on microbe retting of kenaf fiber. Enzyme and Microbial Technology, 40, 1806-1809.

Yang, H., Yan, R., Chen. H., Lee, D. H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 17781-1788.

Zhang, L., Zheng, W., Wang, Z., Ma, Y., Jiang, L., Wang, T. 2018. Efficient degradation of lignin in raw wood via pretreatment with heteropoly acids in gamma-valerolactone/water. Bioresour. Technol., 261, 70–75.

Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S., Beltramini, J. 2011. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 2011, 40, 5588-5617

Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., Weckhuysen, B. M. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev., 110, 3552–3599.



  • There are currently no refbacks.

Copyright (c) 2020 Buletin Tanaman Tembakau, Serat & Minyak Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Buletin Tanaman Tembakau, Serat, & Minyak Industri Editorial Office:

Balai Penelitian Tanaman Pemanis dan Serat
Jalan Raya Karangploso Km 4, Malang 65152
Jawa Timur, Indonesia
Telp: +62-341-491447
Fax: +62-341-485121

View My Stats